📋 概述
本文档整理了VoiceHelper系统开发和使用过程中的最佳实践、设计模式、性能优化技巧和实际应用案例,帮助开发者快速掌握系统精髓,避免常见陷阱。
🏗️ 架构设计最佳实践
1. 微服务架构模式
服务拆分原则
graph TB
subgraph "服务拆分策略"
A[业务边界清晰]
B[数据独立性]
C[技术栈匹配]
D[团队组织结构]
A --> A1[单一职责]
A --> A2[高内聚低耦合]
B --> B1[独立数据库]
B --> B2[最小数据共享]
C --> C1[Go网关层<br/>高并发处理]
C --> C2[Python算法层<br/>AI模型集成]
D --> D1[团队自治]
D --> D2[独立部署]
end
style A fill:#e3f2fd
style B fill:#f3e5f5
style C fill:#e8f5e8
style D fill:#fff3e0
服务通信模式实践
// 1. 同步通信 - 适用于关键路径和低延迟需求
type AlgoServiceClient struct {
baseURL string
httpClient *http.Client
circuitBreaker *CircuitBreaker
}
func (c *AlgoServiceClient) QueryWithTimeout(
ctx context.Context,
request *QueryRequest,
) (*QueryResponse, error) {
// 设置超时上下文
ctx, cancel := context.WithTimeout(ctx, 30*time.Second)
defer cancel()
// 熔断器保护
return c.circuitBreaker.Execute(func() (*QueryResponse, error) {
return c.sendRequest(ctx, request)
})
}
// 2. 异步通信 - 适用于耗时任务和解耦场景
type EventBus struct {
subscribers map[string][]EventHandler
mu sync.RWMutex
}
func (eb *EventBus) PublishAsync(event Event) {
go func() {
eb.mu.RLock()
handlers := eb.subscribers[event.Type]
eb.mu.RUnlock()
for _, handler := range handlers {
go func(h EventHandler) {
if err := h.Handle(event); err != nil {
log.Error("Event handling failed",
zap.Error(err),
zap.String("event_type", event.Type))
}
}(handler)
}
}()
}
// 3. 流式通信 - 适用于实时数据传输
func (h *VoiceHandler) StreamProcessing(stream VoiceStream) error {
for {
select {
case audioChunk := <-stream.AudioChannel:
// 处理音频块
if err := h.processAudioChunk(audioChunk); err != nil {
return fmt.Errorf("audio processing failed: %w", err)
}
case <-stream.Context.Done():
return stream.Context.Err()
case <-time.After(30 * time.Second):
return errors.New("stream timeout")
}
}
}
2. 数据一致性设计
分布式事务处理
# Saga模式实现 - 处理跨服务事务
class DocumentIngestSaga:
"""文档入库的分布式事务协调器"""
def __init__(self):
self.steps = [
('parse_documents', self.parse_documents, self.compensate_parse),
('generate_embeddings', self.generate_embeddings, self.compensate_embeddings),
('update_index', self.update_index, self.compensate_index),
('store_metadata', self.store_metadata, self.compensate_metadata)
]
async def execute(self, request: IngestRequest) -> IngestResult:
"""执行Saga事务"""
executed_steps = []
try:
for step_name, action, compensate in self.steps:
logger.info(f"Executing step: {step_name}")
result = await action(request)
executed_steps.append((step_name, compensate, result))
return IngestResult(success=True, task_id=request.task_id)
except Exception as e:
logger.error(f"Saga execution failed: {e}")
await self.compensate_all(executed_steps)
raise
async def compensate_all(self, executed_steps: List):
"""补偿已执行的步骤"""
for step_name, compensate_func, result in reversed(executed_steps):
try:
await compensate_func(result)
logger.info(f"Compensated step: {step_name}")
except Exception as e:
logger.error(f"Compensation failed for {step_name}: {e}")
async def parse_documents(self, request: IngestRequest):
"""解析文档步骤"""
parsed_docs = []
for file in request.files:
doc = await self.document_parser.parse(file)
parsed_docs.append(doc)
return parsed_docs
async def compensate_parse(self, parsed_docs: List):
"""清理已解析的文档"""
for doc in parsed_docs:
if hasattr(doc, 'temp_file_path'):
os.remove(doc.temp_file_path)
# 事件溯源模式 - 保证数据一致性和可追溯性
class ConversationEventStore:
"""对话事件存储"""
async def append_event(self, event: ConversationEvent):
"""追加事件到事件流"""
await self.db.execute("""
INSERT INTO conversation_events
(conversation_id, event_type, event_data, timestamp, version)
VALUES ($1, $2, $3, $4, $5)
""", event.conversation_id, event.type,
json.dumps(event.data), event.timestamp, event.version)
async def replay_events(self, conversation_id: str) -> Conversation:
"""重放事件重构对话状态"""
events = await self.db.fetch("""
SELECT * FROM conversation_events
WHERE conversation_id = $1
ORDER BY version ASC
""", conversation_id)
conversation = Conversation(id=conversation_id)
for event_row in events:
event = ConversationEvent.from_row(event_row)
conversation = self.apply_event(conversation, event)
return conversation
3. 缓存策略设计
多层缓存架构
/**
* 多层缓存策略实现
* L1: 内存缓存 (最快,容量小)
* L2: Redis缓存 (快速,容量中等)
* L3: 数据库 (慢速,容量大)
*/
class MultiLevelCacheManager {
private l1Cache = new Map<string, CacheEntry>();
private l2Cache: Redis;
private l3Database: Database;
constructor() {
// L1缓存清理定时器
setInterval(() => this.cleanupL1Cache(), 60000);
}
async get<T>(key: string): Promise<T | null> {
// L1缓存查找
const l1Entry = this.l1Cache.get(key);
if (l1Entry && !this.isExpired(l1Entry)) {
this.updateL1Stats('hit');
return l1Entry.data as T;
}
// L2缓存查找
try {
const l2Data = await this.l2Cache.get(key);
if (l2Data) {
const parsed = JSON.parse(l2Data);
// 回填L1缓存
this.setL1(key, parsed, 300000); // 5分钟
this.updateL2Stats('hit');
return parsed as T;
}
} catch (error) {
console.warn('L2 cache error:', error);
}
// L3数据库查询
const dbData = await this.queryDatabase<T>(key);
if (dbData) {
// 回填多级缓存
await this.setL2(key, dbData, 3600000); // 1小时
this.setL1(key, dbData, 300000); // 5分钟
this.updateL3Stats('hit');
return dbData;
}
return null;
}
async set<T>(key: string, data: T, options?: CacheOptions): Promise<void> {
const { l1Ttl = 300000, l2Ttl = 3600000, writeThrough = true } = options || {};
// 同时更新多级缓存
this.setL1(key, data, l1Ttl);
await this.setL2(key, data, l2Ttl);
// 可选的写穿透
if (writeThrough) {
await this.updateDatabase(key, data);
}
}
private setL1<T>(key: string, data: T, ttl: number): void {
this.l1Cache.set(key, {
data,
expiresAt: Date.now() + ttl,
accessCount: 1,
lastAccess: Date.now()
});
}
private async setL2<T>(key: string, data: T, ttl: number): Promise<void> {
await this.l2Cache.setex(key, Math.floor(ttl / 1000), JSON.stringify(data));
}
// 智能缓存预热
async warmupCache(patterns: string[]): Promise<void> {
const warmupTasks = patterns.map(async (pattern) => {
const keys = await this.l2Cache.keys(pattern);
for (const key of keys.slice(0, 100)) { // 限制预热数量
const data = await this.l2Cache.get(key);
if (data) {
this.setL1(key, JSON.parse(data), 600000); // 10分钟
}
}
});
await Promise.all(warmupTasks);
console.log(`Cache warmed up for ${patterns.length} patterns`);
}
// 缓存失效策略
async invalidatePattern(pattern: string): Promise<void> {
// 清理L1缓存
for (const key of this.l1Cache.keys()) {
if (this.matchPattern(key, pattern)) {
this.l1Cache.delete(key);
}
}
// 清理L2缓存
const keys = await this.l2Cache.keys(pattern);
if (keys.length > 0) {
await this.l2Cache.del(...keys);
}
console.log(`Invalidated cache pattern: ${pattern}`);
}
}
// 缓存使用示例
class ConversationService {
constructor(private cache: MultiLevelCacheManager) {}
async getConversation(id: string): Promise<Conversation | null> {
const cacheKey = `conversation:${id}`;
// 先从缓存获取
let conversation = await this.cache.get<Conversation>(cacheKey);
if (!conversation) {
// 缓存未命中,从数据库查询
conversation = await this.db.findConversationById(id);
if (conversation) {
// 存入缓存
await this.cache.set(cacheKey, conversation, {
l1Ttl: 300000, // L1缓存5分钟
l2Ttl: 3600000, // L2缓存1小时
writeThrough: false // 数据已在数据库中
});
}
}
return conversation;
}
async updateConversation(id: string, updates: Partial<Conversation>): Promise<void> {
// 更新数据库
await this.db.updateConversation(id, updates);
// 失效相关缓存
await this.cache.invalidatePattern(`conversation:${id}*`);
await this.cache.invalidatePattern(`user:${updates.userId}:conversations*`);
}
}
🚀 性能优化实战案例
1. 数据库查询优化
N+1查询问题解决
# 问题:N+1查询导致性能瓶颈
# 原始代码(有问题)
async def get_conversations_with_messages_bad(user_id: str):
conversations = await db.fetch(
"SELECT * FROM conversations WHERE user_id = $1", user_id
)
for conversation in conversations:
# N+1问题:为每个对话单独查询消息
messages = await db.fetch(
"SELECT * FROM messages WHERE conversation_id = $1",
conversation.id
)
conversation.messages = messages
return conversations
# 解决方案1:批量查询
async def get_conversations_with_messages_optimized(user_id: str):
conversations = await db.fetch(
"SELECT * FROM conversations WHERE user_id = $1", user_id
)
if not conversations:
return []
# 一次性获取所有相关消息
conversation_ids = [c.id for c in conversations]
messages = await db.fetch("""
SELECT conversation_id, message_id, role, content, created_at
FROM messages
WHERE conversation_id = ANY($1)
ORDER BY conversation_id, created_at
""", conversation_ids)
# 按conversation_id分组
messages_by_conv = {}
for message in messages:
conv_id = message['conversation_id']
if conv_id not in messages_by_conv:
messages_by_conv[conv_id] = []
messages_by_conv[conv_id].append(message)
# 组装结果
for conversation in conversations:
conversation.messages = messages_by_conv.get(conversation.id, [])
return conversations
# 解决方案2:使用DataLoader模式
class MessageDataLoader:
def __init__(self, db):
self.db = db
self.batch_load_fn = self._batch_load_messages
self._batch_cache = {}
self._batch_queue = []
async def load(self, conversation_id: str) -> List[Message]:
"""加载单个对话的消息"""
if conversation_id in self._batch_cache:
return self._batch_cache[conversation_id]
self._batch_queue.append(conversation_id)
# 批量执行
if len(self._batch_queue) >= 10: # 批量大小
await self._execute_batch()
return self._batch_cache.get(conversation_id, [])
async def _batch_load_messages(self, conversation_ids: List[str]):
"""批量加载消息"""
messages = await self.db.fetch("""
SELECT conversation_id, message_id, role, content, created_at
FROM messages
WHERE conversation_id = ANY($1)
ORDER BY conversation_id, created_at
""", conversation_ids)
# 分组并缓存结果
for conv_id in conversation_ids:
self._batch_cache[conv_id] = []
for message in messages:
conv_id = message['conversation_id']
self._batch_cache[conv_id].append(message)
# 解决方案3:使用JOIN查询(适合小数据量)
async def get_conversations_with_recent_message(user_id: str):
return await db.fetch("""
SELECT
c.conversation_id,
c.title,
c.created_at as conversation_created_at,
m.message_id,
m.content as last_message,
m.created_at as message_created_at
FROM conversations c
LEFT JOIN LATERAL (
SELECT message_id, content, created_at
FROM messages
WHERE conversation_id = c.conversation_id
ORDER BY created_at DESC
LIMIT 1
) m ON true
WHERE c.user_id = $1
ORDER BY COALESCE(m.created_at, c.created_at) DESC
""", user_id)
索引优化策略
-- 1. 复合索引设计
-- 对话查询优化
CREATE INDEX CONCURRENTLY idx_conversations_user_status_updated
ON conversations (user_id, status, updated_at DESC)
WHERE status IN ('active', 'archived');
-- 消息查询优化
CREATE INDEX CONCURRENTLY idx_messages_conversation_created
ON messages (conversation_id, created_at DESC)
INCLUDE (role, content);
-- 2. 部分索引优化
-- 只为活跃对话创建索引
CREATE INDEX CONCURRENTLY idx_active_conversations
ON conversations (user_id, updated_at DESC)
WHERE status = 'active';
-- 只为用户消息创建全文索引
CREATE INDEX CONCURRENTLY idx_user_messages_fts
ON messages USING gin(to_tsvector('simple', content))
WHERE role = 'user';
-- 3. 表达式索引
-- 按日期分区查询优化
CREATE INDEX CONCURRENTLY idx_messages_date_partition
ON messages ((created_at::date), conversation_id);
-- JSON字段索引
CREATE INDEX CONCURRENTLY idx_conversation_metadata_tags
ON conversations USING gin((metadata->'tags'))
WHERE metadata ? 'tags';
-- 4. 查询性能分析
-- 使用EXPLAIN ANALYZE分析查询计划
EXPLAIN (ANALYZE, BUFFERS, FORMAT JSON)
SELECT c.*, m.content as last_message
FROM conversations c
LEFT JOIN LATERAL (
SELECT content
FROM messages
WHERE conversation_id = c.conversation_id
ORDER BY created_at DESC
LIMIT 1
) m ON true
WHERE c.user_id = $1
ORDER BY c.updated_at DESC
LIMIT 20;
2. 内存使用优化
大数据集处理
# 问题:大量数据导致内存溢出
# 原始代码(有问题)
async def process_large_dataset_bad():
# 一次性加载所有数据到内存
all_documents = await db.fetch("SELECT * FROM documents") # 可能有几万条记录
processed_results = []
for doc in all_documents:
result = await process_document(doc) # 内存占用持续增长
processed_results.append(result)
return processed_results
# 解决方案1:流式处理
async def process_large_dataset_streaming():
"""使用异步生成器流式处理大数据集"""
async def document_stream():
"""文档流生成器"""
offset = 0
batch_size = 1000
while True:
batch = await db.fetch(
"SELECT * FROM documents ORDER BY id LIMIT $1 OFFSET $2",
batch_size, offset
)
if not batch:
break
for doc in batch:
yield doc
offset += batch_size
# 流式处理
processed_count = 0
async for document in document_stream():
result = await process_document(document)
# 批量写入结果
if processed_count % 100 == 0:
await flush_results()
processed_count += 1
# 内存管理:定期触发垃圾回收
if processed_count % 1000 == 0:
import gc
gc.collect()
logger.info(f"Processed {processed_count} documents")
# 解决方案2:内存池管理
class DocumentProcessor:
def __init__(self, pool_size: int = 1000):
self.pool_size = pool_size
self.processing_pool = []
self.memory_threshold = 500 * 1024 * 1024 # 500MB
async def process_batch(self, documents: List[Document]) -> List[ProcessResult]:
results = []
for i, doc in enumerate(documents):
# 检查内存使用
if self._get_memory_usage() > self.memory_threshold:
await self._force_gc()
result = await self._process_single_document(doc)
results.append(result)
# 批量处理完成
if (i + 1) % self.pool_size == 0:
await self._flush_intermediate_results(results)
results.clear() # 释放内存
return results
def _get_memory_usage(self) -> int:
"""获取当前内存使用量"""
import psutil
process = psutil.Process()
return process.memory_info().rss
async def _force_gc(self):
"""强制垃圾回收"""
import gc
gc.collect()
await asyncio.sleep(0.1) # 让出CPU时间
# 解决方案3:对象池模式
class ObjectPool:
"""对象池模式减少内存分配"""
def __init__(self, factory, max_size: int = 100):
self.factory = factory
self.pool = []
self.max_size = max_size
self.in_use = set()
def acquire(self):
"""获取对象"""
if self.pool:
obj = self.pool.pop()
else:
obj = self.factory()
self.in_use.add(id(obj))
return obj
def release(self, obj):
"""释放对象"""
obj_id = id(obj)
if obj_id in self.in_use:
self.in_use.remove(obj_id)
# 重置对象状态
if hasattr(obj, 'reset'):
obj.reset()
# 添加回池中
if len(self.pool) < self.max_size:
self.pool.append(obj)
# 使用对象池优化文档处理
class DocumentParserPool:
def __init__(self):
self.parser_pool = ObjectPool(
factory=lambda: DocumentParser(),
max_size=20
)
async def parse_document(self, file_content: bytes) -> Document:
parser = self.parser_pool.acquire()
try:
result = await parser.parse(file_content)
return result
finally:
self.parser_pool.release(parser)
3. 并发处理优化
异步并发模式
# 高并发异步处理模式
import asyncio
from asyncio import Semaphore
from typing import AsyncGenerator, List, Callable
class ConcurrencyManager:
"""并发管理器 - 控制并发数量和资源使用"""
def __init__(
self,
max_concurrent: int = 10,
rate_limit: float = 100, # 每秒请求数
timeout: float = 30.0
):
self.semaphore = Semaphore(max_concurrent)
self.rate_limiter = RateLimiter(rate_limit)
self.timeout = timeout
async def process_concurrent(
self,
items: List[any],
processor: Callable,
batch_size: int = 50
) -> AsyncGenerator[any, None]:
"""并发处理项目列表"""
# 分批处理避免创建过多协程
for i in range(0, len(items), batch_size):
batch = items[i:i + batch_size]
# 并发处理当前批次
tasks = [
self._process_single_item(item, processor)
for item in batch
]
# 等待批次完成
results = await asyncio.gather(
*tasks,
return_exceptions=True
)
# 生成结果
for result in results:
if not isinstance(result, Exception):
yield result
else:
logger.error(f"Processing failed: {result}")
async def _process_single_item(self, item: any, processor: Callable):
"""处理单个项目"""
async with self.semaphore: # 限制并发数
await self.rate_limiter.acquire() # 限制速率
try:
return await asyncio.wait_for(
processor(item),
timeout=self.timeout
)
except asyncio.TimeoutError:
raise Exception(f"Processing timeout for item: {item}")
class RateLimiter:
"""速率限制器"""
def __init__(self, rate: float):
self.rate = rate
self.tokens = rate
self.last_update = asyncio.get_event_loop().time()
self.lock = asyncio.Lock()
async def acquire(self):
"""获取令牌"""
async with self.lock:
now = asyncio.get_event_loop().time()
# 添加令牌
elapsed = now - self.last_update
self.tokens = min(self.rate, self.tokens + elapsed * self.rate)
self.last_update = now
# 检查是否有可用令牌
if self.tokens < 1:
sleep_time = (1 - self.tokens) / self.rate
await asyncio.sleep(sleep_time)
self.tokens = 0
else:
self.tokens -= 1
# 实际应用案例:批量文档处理
class BatchDocumentProcessor:
def __init__(self):
self.concurrency_manager = ConcurrencyManager(
max_concurrent=5, # 最多5个并发
rate_limit=10, # 每秒10个请求
timeout=60.0 # 60秒超时
)
self.embedding_service = EmbeddingService()
async def process_documents(
self,
documents: List[Document]
) -> List[ProcessedDocument]:
"""批量处理文档"""
results = []
async for result in self.concurrency_manager.process_concurrent(
items=documents,
processor=self._process_single_document,
batch_size=20
):
results.append(result)
# 进度报告
if len(results) % 100 == 0:
logger.info(f"Processed {len(results)}/{len(documents)} documents")
return results
async def _process_single_document(self, doc: Document) -> ProcessedDocument:
"""处理单个文档"""
try:
# 1. 文本提取
text = await self._extract_text(doc)
# 2. 文本分块
chunks = await self._chunk_text(text)
# 3. 生成嵌入向量
embeddings = await self.embedding_service.generate_embeddings(chunks)
# 4. 构建结果
return ProcessedDocument(
document_id=doc.id,
chunks=chunks,
embeddings=embeddings,
processed_at=datetime.now()
)
except Exception as e:
logger.error(f"Document processing failed: {doc.id}, error: {e}")
raise
async def _extract_text(self, doc: Document) -> str:
"""提取文档文本"""
if doc.type == 'pdf':
return await self._extract_pdf_text(doc.content)
elif doc.type == 'docx':
return await self._extract_docx_text(doc.content)
else:
return doc.content
async def _chunk_text(self, text: str) -> List[str]:
"""文本分块"""
# 使用异步实现避免阻塞
return await asyncio.get_event_loop().run_in_executor(
None, # 使用默认线程池
self._sync_chunk_text,
text
)
def _sync_chunk_text(self, text: str) -> List[str]:
"""同步文本分块实现"""
chunk_size = 1000
overlap = 200
chunks = []
for i in range(0, len(text), chunk_size - overlap):
chunk = text[i:i + chunk_size]
if chunk.strip():
chunks.append(chunk)
return chunks
# 使用示例
async def main():
processor = BatchDocumentProcessor()
# 模拟大量文档
documents = [
Document(id=f"doc_{i}", content=f"Document content {i}", type="txt")
for i in range(1000)
]
# 批量处理
start_time = time.time()
processed_docs = await processor.process_documents(documents)
duration = time.time() - start_time
logger.info(f"Processed {len(processed_docs)} documents in {duration:.2f}s")
if __name__ == "__main__":
asyncio.run(main())
🛡️ 安全最佳实践
1. 输入验证与清理
# 输入验证和清理框架
import re
import html
import bleach
from typing import Any, Dict, List
from pydantic import BaseModel, validator
from enum import Enum
class SecurityLevel(Enum):
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
PARANOID = "paranoid"
class InputSanitizer:
"""输入清理器"""
# HTML标签白名单
ALLOWED_HTML_TAGS = [
'p', 'br', 'strong', 'em', 'u', 'ol', 'ul', 'li',
'h1', 'h2', 'h3', 'h4', 'h5', 'h6',
'blockquote', 'code', 'pre'
]
# HTML属性白名单
ALLOWED_HTML_ATTRIBUTES = {
'a': ['href', 'title'],
'img': ['src', 'alt', 'title', 'width', 'height'],
'code': ['class'],
'pre': ['class']
}
@classmethod
def sanitize_html(cls, content: str, level: SecurityLevel = SecurityLevel.MEDIUM) -> str:
"""清理HTML内容"""
if level == SecurityLevel.PARANOID:
# 完全移除HTML标签
return bleach.clean(content, tags=[], strip=True)
elif level == SecurityLevel.HIGH:
# 只允许最基本的标签
basic_tags = ['p', 'br', 'strong', 'em']
return bleach.clean(content, tags=basic_tags, strip=True)
elif level == SecurityLevel.MEDIUM:
# 允许常用的安全标签
return bleach.clean(
content,
tags=cls.ALLOWED_HTML_TAGS,
attributes=cls.ALLOWED_HTML_ATTRIBUTES,
strip=True
)
else: # LOW level
# 基本清理,保留大部分标签
return bleach.clean(content, strip=True)
@classmethod
def sanitize_sql_input(cls, value: str) -> str:
"""防SQL注入清理"""
if not isinstance(value, str):
return str(value)
# 移除潜在的SQL注入字符
dangerous_patterns = [
r"[';\"\\]", # 引号和反斜杠
r"--", # SQL注释
r"/\*.*?\*/", # SQL块注释
r"\b(union|select|insert|delete|update|drop|create|alter)\b", # SQL关键字
r"[<>]", # 比较操作符
]
cleaned = value
for pattern in dangerous_patterns:
cleaned = re.sub(pattern, "", cleaned, flags=re.IGNORECASE)
return cleaned.strip()
@classmethod
def sanitize_xss_input(cls, value: str) -> str:
"""防XSS攻击清理"""
if not isinstance(value, str):
return str(value)
# HTML实体编码
cleaned = html.escape(value)
# 移除JavaScript协议
cleaned = re.sub(r'javascript:', '', cleaned, flags=re.IGNORECASE)
# 移除事件处理器
cleaned = re.sub(r'on\w+\s*=', '', cleaned, flags=re.IGNORECASE)
return cleaned
# 基于Pydantic的数据验证模型
class SecureMessageInput(BaseModel):
"""安全的消息输入模型"""
content: str
conversation_id: str
message_type: str = "text"
@validator('content')
def validate_content(cls, v):
if not v or not v.strip():
raise ValueError("消息内容不能为空")
# 长度限制
if len(v) > 10000:
raise ValueError("消息内容过长")
# XSS防护
cleaned_content = InputSanitizer.sanitize_xss_input(v)
# 内容安全检查
if cls._contains_malicious_content(cleaned_content):
raise ValueError("消息包含不当内容")
return cleaned_content
@validator('conversation_id')
def validate_conversation_id(cls, v):
# UUID格式验证
uuid_pattern = r'^[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$'
if not re.match(uuid_pattern, v, re.IGNORECASE):
raise ValueError("对话ID格式无效")
return v
@staticmethod
def _contains_malicious_content(content: str) -> bool:
"""检查是否包含恶意内容"""
malicious_patterns = [
r'<script[^>]*>.*?</script>', # Script标签
r'javascript:', # JavaScript协议
r'vbscript:', # VBScript协议
r'data:text/html', # Data URL
r'<iframe[^>]*>', # Iframe标签
r'<object[^>]*>', # Object标签
r'<embed[^>]*>', # Embed标签
]
for pattern in malicious_patterns:
if re.search(pattern, content, re.IGNORECASE):
return True
return False
# API安全装饰器
from functools import wraps
def secure_endpoint(
rate_limit: int = 100, # 每分钟请求限制
require_auth: bool = True,
input_validation: Any = None,
security_level: SecurityLevel = SecurityLevel.MEDIUM
):
"""安全端点装饰器"""
def decorator(func):
@wraps(func)
async def wrapper(request, *args, **kwargs):
# 1. 速率限制检查
client_ip = request.client.host
if not await check_rate_limit(client_ip, rate_limit):
raise HTTPException(429, "请求频率超出限制")
# 2. 认证检查
if require_auth:
user = await authenticate_request(request)
if not user:
raise HTTPException(401, "认证失败")
kwargs['current_user'] = user
# 3. 输入验证
if input_validation:
try:
validated_data = input_validation(**request.json())
kwargs['validated_data'] = validated_data
except ValidationError as e:
raise HTTPException(400, f"输入验证失败: {e}")
# 4. 安全头设置
response = await func(request, *args, **kwargs)
# 添加安全响应头
if hasattr(response, 'headers'):
response.headers.update({
'X-Content-Type-Options': 'nosniff',
'X-Frame-Options': 'DENY',
'X-XSS-Protection': '1; mode=block',
'Strict-Transport-Security': 'max-age=31536000; includeSubDomains',
'Content-Security-Policy': "default-src 'self'"
})
return response
return wrapper
return decorator
# 使用示例
@secure_endpoint(
rate_limit=50,
require_auth=True,
input_validation=SecureMessageInput,
security_level=SecurityLevel.HIGH
)
async def send_message(request, current_user, validated_data):
"""发送消息的安全端点"""
# 权限检查
if not can_send_message(current_user, validated_data.conversation_id):
raise HTTPException(403, "无权限访问该对话")
# 内容过滤
filtered_content = await content_filter.filter(validated_data.content)
# 保存消息
message = await create_message(
user_id=current_user.id,
conversation_id=validated_data.conversation_id,
content=filtered_content,
type=validated_data.message_type
)
return {"message": "消息发送成功", "message_id": message.id}
2. 数据加密与脱敏
# 数据加密和脱敏工具
import hashlib
import hmac
import secrets
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives.asymmetric import rsa, padding
import base64
import re
class DataEncryption:
"""数据加密工具类"""
def __init__(self, master_key: str):
self.master_key = master_key.encode()
self._fernet_cache = {}
def _get_fernet(self, salt: bytes = None) -> Fernet:
"""获取Fernet加密实例"""
if salt is None:
salt = b'default_salt_1234567890123456' # 32字节盐值
cache_key = base64.b64encode(salt).decode()
if cache_key not in self._fernet_cache:
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=salt,
iterations=100000,
)
key = base64.urlsafe_b64encode(kdf.derive(self.master_key))
self._fernet_cache[cache_key] = Fernet(key)
return self._fernet_cache[cache_key]
def encrypt_sensitive_data(self, data: str, user_salt: str = None) -> str:
"""加密敏感数据"""
if not data:
return ""
# 使用用户相关的盐值
salt = user_salt.encode() if user_salt else secrets.token_bytes(16)
fernet = self._get_fernet(salt)
encrypted = fernet.encrypt(data.encode())
# 返回 salt + encrypted_data 的base64编码
return base64.b64encode(salt + encrypted).decode()
def decrypt_sensitive_data(self, encrypted_data: str) -> str:
"""解密敏感数据"""
if not encrypted_data:
return ""
try:
# 解码base64
data = base64.b64decode(encrypted_data.encode())
# 分离盐值和加密数据
salt = data[:16] # 前16字节为盐值
encrypted = data[16:]
fernet = self._get_fernet(salt)
decrypted = fernet.decrypt(encrypted)
return decrypted.decode()
except Exception as e:
logger.error(f"Decryption failed: {e}")
return ""
class DataMasking:
"""数据脱敏工具类"""
@staticmethod
def mask_email(email: str) -> str:
"""邮箱脱敏"""
if not email or '@' not in email:
return email
local, domain = email.split('@', 1)
if len(local) <= 2:
masked_local = '*' * len(local)
else:
masked_local = local[0] + '*' * (len(local) - 2) + local[-1]
return f"{masked_local}@{domain}"
@staticmethod
def mask_phone(phone: str) -> str:
"""手机号脱敏"""
if not phone:
return phone
# 移除非数字字符
digits = re.sub(r'\D', '', phone)
if len(digits) >= 11:
return digits[:3] + '*' * (len(digits) - 7) + digits[-4:]
elif len(digits) >= 7:
return digits[:3] + '*' * (len(digits) - 6) + digits[-3:]
else:
return '*' * len(digits)
@staticmethod
def mask_id_card(id_card: str) -> str:
"""身份证号脱敏"""
if not id_card:
return id_card
if len(id_card) == 18:
return id_card[:6] + '*' * 8 + id_card[-4:]
elif len(id_card) == 15:
return id_card[:6] + '*' * 6 + id_card[-3:]
else:
return '*' * len(id_card)
@staticmethod
def mask_content(content: str, preserve_length: int = 50) -> str:
"""内容脱敏"""
if not content:
return content
if len(content) <= preserve_length:
return content
return content[:preserve_length] + f"... (共{len(content)}字符)"
@classmethod
def mask_user_data(cls, user_data: dict) -> dict:
"""用户数据脱敏"""
masked_data = user_data.copy()
# 定义脱敏规则
masking_rules = {
'email': cls.mask_email,
'phone': cls.mask_phone,
'mobile': cls.mask_phone,
'id_card': cls.mask_id_card,
'identity_card': cls.mask_id_card,
'content': lambda x: cls.mask_content(x, 100),
'message': lambda x: cls.mask_content(x, 200),
}
for field, masking_func in masking_rules.items():
if field in masked_data and masked_data[field]:
masked_data[field] = masking_func(masked_data[field])
return masked_data
# 敏感数据模型
class SensitiveDataModel(BaseModel):
"""敏感数据模型"""
def __init__(self, **data):
# 自动加密敏感字段
encryption = DataEncryption(os.getenv('ENCRYPTION_KEY', 'default_key'))
sensitive_fields = getattr(self, 'SENSITIVE_FIELDS', [])
for field in sensitive_fields:
if field in data and data[field]:
data[field] = encryption.encrypt_sensitive_data(
str(data[field]),
user_salt=data.get('user_id', '')
)
super().__init__(**data)
def decrypt_sensitive_fields(self):
"""解密敏感字段"""
encryption = DataEncryption(os.getenv('ENCRYPTION_KEY', 'default_key'))
sensitive_fields = getattr(self, 'SENSITIVE_FIELDS', [])
for field in sensitive_fields:
if hasattr(self, field) and getattr(self, field):
decrypted = encryption.decrypt_sensitive_data(getattr(self, field))
setattr(self, field, decrypted)
def to_masked_dict(self) -> dict:
"""返回脱敏后的字典"""
data = self.dict()
return DataMasking.mask_user_data(data)
# 使用示例
class UserProfile(SensitiveDataModel):
SENSITIVE_FIELDS = ['email', 'phone', 'real_name']
user_id: str
username: str
email: str
phone: str
real_name: str
created_at: datetime
# 使用示例
user = UserProfile(
user_id="123456",
username="testuser",
email="user@example.com",
phone="13800138000",
real_name="张三",
created_at=datetime.now()
)
# 获取脱敏数据用于日志
masked_data = user.to_masked_dict()
logger.info(f"User profile: {masked_data}")
# 解密敏感数据用于业务逻辑
user.decrypt_sensitive_fields()
send_email(user.email, "Welcome!")
📱 实际应用案例
1. 客服系统集成
/**
* 客服系统集成案例
* 演示VoiceHelper如何集成到现有客服系统中
*/
interface CustomerServiceConfig {
// 工作时间配置
workingHours: {
start: string;
end: string;
timezone: string;
workdays: number[];
};
// 自动回复配置
autoReply: {
enabled: boolean;
greeting: string;
fallback: string;
transferMessage: string;
};
// 人工客服配置
humanAgent: {
maxWaitTime: number;
transferKeywords: string[];
escalationConditions: string[];
};
}
class CustomerServiceBot {
private voiceHelper: VoiceHelperClient;
private knowledgeBase: KnowledgeBaseService;
private ticketSystem: TicketingService;
constructor(
private config: CustomerServiceConfig,
private agentPool: AgentPool
) {
this.voiceHelper = new VoiceHelperClient({
baseURL: process.env.VOICEHELPER_API_URL,
apiKey: process.env.VOICEHELPER_API_KEY
});
}
async handleCustomerInquiry(inquiry: CustomerInquiry): Promise<ServiceResponse> {
const conversation = await this.initializeConversation(inquiry);
try {
// 1. 意图识别和分类
const intent = await this.classifyInquiry(inquiry.message);
// 2. 根据意图选择处理策略
switch (intent.category) {
case 'faq':
return await this.handleFAQ(conversation, inquiry);
case 'technical_support':
return await this.handleTechnicalSupport(conversation, inquiry);
case 'billing':
return await this.handleBillingInquiry(conversation, inquiry);
case 'complaint':
return await this.escalateToHuman(conversation, inquiry);
default:
return await this.handleGeneralInquiry(conversation, inquiry);
}
} catch (error) {
logger.error('Customer service error:', error);
return await this.handleServiceError(conversation, error);
}
}
private async handleFAQ(
conversation: Conversation,
inquiry: CustomerInquiry
): Promise<ServiceResponse> {
// 使用VoiceHelper进行FAQ检索
const response = await this.voiceHelper.chat({
message: inquiry.message,
conversation_id: conversation.id,
retrieval_config: {
mode: 'hybrid',
top_k: 5,
collection: 'customer_service_faq'
}
});
// 解析流式响应
let botResponse = '';
let references: Reference[] = [];
for await (const chunk of response.stream()) {
if (chunk.type === 'generation_chunk') {
botResponse += chunk.data.text;
} else if (chunk.type === 'retrieval_result') {
references = chunk.data.results;
}
}
// 添加人工客服选项
const hasHumanOption = this.shouldOfferHumanAgent(inquiry, botResponse);
return {
type: 'bot_response',
message: botResponse,
references,
actions: hasHumanOption ? [{
type: 'transfer_to_human',
label: '转人工客服',
data: { reason: 'user_request' }
}] : [],
satisfaction_survey: true
};
}
private async handleTechnicalSupport(
conversation: Conversation,
inquiry: CustomerInquiry
): Promise<ServiceResponse> {
// 检查是否需要收集系统信息
const needsSystemInfo = await this.requiresSystemInfo(inquiry.message);
if (needsSystemInfo && !inquiry.systemInfo) {
return {
type: 'system_info_request',
message: '为了更好地帮助您解决问题,请提供以下系统信息:',
form: {
fields: [
{ name: 'os', label: '操作系统', type: 'select', required: true },
{ name: 'browser', label: '浏览器版本', type: 'text', required: true },
{ name: 'error_message', label: '错误信息', type: 'textarea', required: false }
]
}
};
}
// 结合系统信息进行智能诊断
const diagnosticPrompt = this.buildDiagnosticPrompt(inquiry);
const response = await this.voiceHelper.chat({
message: diagnosticPrompt,
conversation_id: conversation.id,
retrieval_config: {
mode: 'graph',
top_k: 3,
collection: 'technical_documentation'
}
});
let solution = '';
for await (const chunk of response.stream()) {
if (chunk.type === 'generation_chunk') {
solution += chunk.data.text;
}
}
// 创建工单(如果问题复杂)
if (this.isComplexIssue(inquiry, solution)) {
const ticket = await this.ticketSystem.createTicket({
customer_id: inquiry.customer_id,
category: 'technical_support',
priority: this.calculatePriority(inquiry),
description: inquiry.message,
conversation_id: conversation.id,
initial_analysis: solution
});
solution += `\n\n工单已创建:${ticket.id},我们的技术团队会在24小时内跟进。`;
}
return {
type: 'technical_solution',
message: solution,
actions: [
{ type: 'mark_resolved', label: '问题已解决' },
{ type: 'escalate', label: '需要更多帮助' }
]
};
}
private async escalateToHuman(
conversation: Conversation,
inquiry: CustomerInquiry
): Promise<ServiceResponse> {
// 检查人工客服可用性
const agent = await this.agentPool.findAvailableAgent({
skills: ['complaint_handling'],
language: inquiry.language,
priority: 'high'
});
if (agent) {
// 立即转接
await this.transferToAgent(conversation, agent, {
reason: 'complaint',
priority: 'high',
context: {
customer_emotion: 'frustrated',
issue_category: 'complaint'
}
});
return {
type: 'transfer_initiated',
message: `您的问题已转接给专业客服 ${agent.name},请稍等...`,
estimated_wait_time: 0
};
} else {
// 排队等待
const queuePosition = await this.agentPool.addToQueue(conversation, {
priority: 'high',
skills_required: ['complaint_handling']
});
return {
type: 'queued_for_agent',
message: '当前所有客服都忙碌中,您在队列中的位置是第 ${queuePosition} 位。',
estimated_wait_time: queuePosition * 3 * 60, // 估算等待时间
actions: [
{ type: 'leave_message', label: '留言' },
{ type: 'callback_request', label: '申请回电' }
]
};
}
}
// 智能质量监控
async monitorConversationQuality(conversation: Conversation): Promise<QualityReport> {
const messages = await this.getConversationMessages(conversation.id);
// 情感分析
const sentimentAnalysis = await this.analyzeSentiment(messages);
// 解决率统计
const resolutionStatus = await this.checkResolutionStatus(conversation);
// 客户满意度预测
const satisfactionPrediction = await this.predictSatisfaction(messages);
return {
conversation_id: conversation.id,
quality_score: this.calculateQualityScore(sentimentAnalysis, resolutionStatus),
sentiment_trend: sentimentAnalysis.trend,
resolution_status: resolutionStatus,
predicted_satisfaction: satisfactionPrediction,
recommendations: this.generateImprovementRecommendations(
sentimentAnalysis,
resolutionStatus,
satisfactionPrediction
)
};
}
}
// 使用示例
const customerServiceBot = new CustomerServiceBot(
{
workingHours: {
start: '09:00',
end: '18:00',
timezone: 'Asia/Shanghai',
workdays: [1, 2, 3, 4, 5]
},
autoReply: {
enabled: true,
greeting: '您好!我是AI客服助手,有什么可以帮助您的吗?',
fallback: '抱歉,我没有完全理解您的问题,正在为您转接人工客服...',
transferMessage: '正在为您转接人工客服,请稍候...'
},
humanAgent: {
maxWaitTime: 10 * 60, // 10分钟
transferKeywords: ['转人工', '投诉', '退款'],
escalationConditions: ['情绪负面', '复杂问题', '多次未解决']
}
},
new AgentPool()
);
// API集成
app.post('/api/customer-service/chat', async (req, res) => {
try {
const inquiry: CustomerInquiry = req.body;
const response = await customerServiceBot.handleCustomerInquiry(inquiry);
res.json({
success: true,
data: response
});
} catch (error) {
logger.error('Customer service API error:', error);
res.status(500).json({
success: false,
error: 'Service temporarily unavailable'
});
}
});
2. 教育培训应用
# 教育培训应用案例
# 演示VoiceHelper在在线教育场景中的应用
class EducationAssistant:
"""教育助手系统"""
def __init__(self, course_id: str, voicehelper_client):
self.course_id = course_id
self.voicehelper = voicehelper_client
self.knowledge_base = CourseKnowledgeBase(course_id)
self.learning_tracker = LearningProgressTracker()
self.assessment_engine = AssessmentEngine()
async def handle_student_question(
self,
student_id: str,
question: str,
context: dict = None
) -> EducationResponse:
"""处理学生提问"""
# 1. 分析问题类型
question_type = await self.classify_question(question)
# 2. 获取学生学习进度
progress = await self.learning_tracker.get_progress(student_id, self.course_id)
# 3. 构建个性化查询上下文
enhanced_query = self.build_educational_context(
question=question,
student_progress=progress,
question_type=question_type,
context=context
)
# 4. 调用VoiceHelper进行智能问答
response = await self.voicehelper.chat({
'message': enhanced_query,
'conversation_id': f"edu_{student_id}_{self.course_id}",
'retrieval_config': {
'mode': 'hybrid',
'top_k': 5,
'collection': f'course_{self.course_id}'
},
'context': {
'user_type': 'student',
'course_level': progress.current_level,
'learning_style': progress.preferred_style
}
})
# 5. 解析响应并增强教育功能
educational_response = await self.enhance_educational_response(
response, question_type, student_id
)
# 6. 记录学习互动
await self.learning_tracker.record_interaction(
student_id=student_id,
question=question,
response=educational_response,
question_type=question_type
)
return educational_response
async def classify_question(self, question: str) -> QuestionType:
"""分类学生问题"""
# 使用预训练模型进行问题分类
classification_prompt = f"""
分析以下学生问题的类型:
问题: {question}
请从以下类型中选择最合适的:
1. concept_explanation - 概念解释
2. problem_solving - 解题求助
3. example_request - 要求示例
4. clarification - 澄清疑问
5. application - 应用场景
6. assessment - 自我评估
只返回类型代码。
"""
# 调用分类服务
result = await self.voicehelper.classify(classification_prompt)
return QuestionType(result.strip())
def build_educational_context(
self,
question: str,
student_progress: StudentProgress,
question_type: QuestionType,
context: dict = None
) -> str:
"""构建教育上下文增强查询"""
context_parts = [
f"学生问题: {question}",
f"当前学习阶段: {student_progress.current_level}",
f"已学习章节: {', '.join(student_progress.completed_chapters)}",
f"学习偏好: {student_progress.preferred_style}",
f"问题类型: {question_type.value}"
]
# 根据问题类型添加特定指导
if question_type == QuestionType.CONCEPT_EXPLANATION:
context_parts.append(
"请提供清晰的概念解释,包含定义、特征、实例,适合当前学习水平。"
)
elif question_type == QuestionType.PROBLEM_SOLVING:
context_parts.append(
"请提供解题思路和步骤,而非直接答案,引导学生思考。"
)
elif question_type == QuestionType.EXAMPLE_REQUEST:
context_parts.append(
"请提供相关的实际例子,最好结合学生的生活经验。"
)
# 添加个性化学习建议
if student_progress.weak_areas:
context_parts.append(
f"注意学生在以下方面较弱,需要额外关注: {', '.join(student_progress.weak_areas)}"
)
return "\n".join(context_parts)
async def enhance_educational_response(
self,
base_response: VoiceHelperResponse,
question_type: QuestionType,
student_id: str
) -> EducationResponse:
"""增强教育响应功能"""
# 解析基础响应
answer = ""
references = []
async for chunk in base_response.stream():
if chunk.type == 'generation_chunk':
answer += chunk.data.text
elif chunk.type == 'retrieval_result':
references = chunk.data.results
# 生成相关练习题
related_exercises = []
if question_type in [QuestionType.CONCEPT_EXPLANATION, QuestionType.PROBLEM_SOLVING]:
related_exercises = await self.generate_practice_questions(
topic=self.extract_topic_from_question(base_response.original_question),
difficulty=await self.get_student_level(student_id)
)
# 推荐学习资源
recommended_resources = await self.recommend_learning_resources(
student_id=student_id,
current_topic=self.extract_topic_from_question(base_response.original_question),
question_type=question_type
)
# 生成学习路径建议
learning_path = await self.suggest_learning_path(
student_id=student_id,
current_understanding=self.assess_understanding_from_question(
base_response.original_question
)
)
return EducationResponse(
answer=answer,
references=references,
related_exercises=related_exercises,
recommended_resources=recommended_resources,
learning_path_suggestions=learning_path,
interactive_elements=self.create_interactive_elements(question_type),
assessment_opportunities=await self.suggest_assessment(student_id, question_type)
)
async def generate_practice_questions(
self,
topic: str,
difficulty: str
) -> List[PracticeQuestion]:
"""生成相关练习题"""
generation_prompt = f"""
基于主题"{topic}",生成3个{difficulty}难度的练习题。
要求:
1. 题目应该循序渐进
2. 包含不同题型(选择题、填空题、简答题)
3. 每题提供详细的解题思路
4. 标明知识点和难度级别
返回JSON格式。
"""
response = await self.voicehelper.generate(generation_prompt)
try:
questions_data = json.loads(response)
return [PracticeQuestion(**q) for q in questions_data.get('questions', [])]
except (json.JSONDecodeError, ValidationError):
logger.warning("Failed to generate practice questions")
return []
async def adaptive_tutoring_session(
self,
student_id: str,
topic: str,
duration_minutes: int = 30
) -> TutoringSession:
"""自适应辅导会话"""
session = TutoringSession(
student_id=student_id,
topic=topic,
start_time=datetime.now(),
target_duration=duration_minutes
)
# 初始评估
initial_assessment = await self.assessment_engine.quick_assessment(
student_id, topic
)
session.initial_level = initial_assessment.level
# 生成个性化学习计划
learning_plan = await self.create_adaptive_plan(
topic=topic,
current_level=initial_assessment.level,
time_available=duration_minutes,
learning_style=await self.get_learning_style(student_id)
)
session.learning_activities = []
# 执行学习活动
for activity in learning_plan.activities:
activity_result = await self.execute_learning_activity(
student_id=student_id,
activity=activity,
session_context=session
)
session.learning_activities.append(activity_result)
# 动态调整后续活动
if activity_result.performance_score < 0.7:
# 学习效果不好,调整难度
learning_plan = await self.adjust_learning_plan(
learning_plan,
performance_feedback=activity_result
)
# 检查时间限制
if session.elapsed_minutes() >= duration_minutes:
break
# 会话总结和建议
session.summary = await self.generate_session_summary(session)
session.next_steps = await self.recommend_next_steps(student_id, session)
# 更新学习进度
await self.learning_tracker.update_progress(
student_id=student_id,
topic=topic,
session_results=session
)
return session
async def execute_learning_activity(
self,
student_id: str,
activity: LearningActivity,
session_context: TutoringSession
) -> ActivityResult:
"""执行学习活动"""
result = ActivityResult(
activity_type=activity.type,
start_time=datetime.now()
)
try:
if activity.type == ActivityType.EXPLANATION:
result = await self.deliver_explanation(
student_id, activity.content, session_context
)
elif activity.type == ActivityType.PRACTICE:
result = await self.conduct_practice_session(
student_id, activity.questions, session_context
)
elif activity.type == ActivityType.DISCUSSION:
result = await self.facilitate_discussion(
student_id, activity.discussion_topics, session_context
)
elif activity.type == ActivityType.ASSESSMENT:
result = await self.conduct_mini_assessment(
student_id, activity.assessment_items, session_context
)
except Exception as e:
logger.error(f"Activity execution failed: {e}")
result.success = False
result.error_message = str(e)
finally:
result.end_time = datetime.now()
result.duration_minutes = (result.end_time - result.start_time).seconds // 60
return result
# 使用示例:数学辅导系统
class MathTutoringSystem(EducationAssistant):
"""数学辅导系统"""
def __init__(self, grade_level: str):
super().__init__(f"math_grade_{grade_level}", VoiceHelperClient())
self.grade_level = grade_level
self.problem_solver = MathProblemSolver()
async def solve_math_problem(
self,
student_id: str,
problem: str,
show_steps: bool = True
) -> MathSolutionResponse:
"""数学问题求解"""
# 分析问题类型
problem_type = await self.analyze_math_problem(problem)
# 获取解题思路
solution_prompt = f"""
数学问题: {problem}
问题类型: {problem_type}
学生年级: {self.grade_level}
请提供:
1. 解题思路和步骤(不要直接给答案)
2. 相关概念解释
3. 类似例题
4. 常见错误提醒
要引导学生独立思考,而非直接告诉答案。
"""
response = await self.voicehelper.chat({
'message': solution_prompt,
'conversation_id': f"math_{student_id}",
'retrieval_config': {
'collection': f'math_textbook_grade_{self.grade_level}'
}
})
guidance = ""
async for chunk in response.stream():
if chunk.type == 'generation_chunk':
guidance += chunk.data.text
# 生成可视化辅助
visual_aids = await self.create_visual_aids(problem, problem_type)
# 生成练习题
similar_problems = await self.generate_similar_problems(problem, problem_type)
return MathSolutionResponse(
guidance=guidance,
visual_aids=visual_aids,
similar_problems=similar_problems,
difficulty_level=await self.assess_problem_difficulty(problem),
estimated_time=await self.estimate_solving_time(problem, student_id)
)
# 部署示例
if __name__ == "__main__":
# 启动教育助手服务
math_tutor = MathTutoringSystem(grade_level="8")
# 处理学生提问
async def handle_student_request():
response = await math_tutor.handle_student_question(
student_id="student_123",
question="二次方程怎么解?",
context={
'current_chapter': '一元二次方程',
'difficulty_preference': 'medium'
}
)
print("教育助手回复:", response.answer)
print("推荐练习:", response.related_exercises)
print("学习建议:", response.learning_path_suggestions)
asyncio.run(handle_student_request())
这份最佳实践文档涵盖了架构设计、性能优化、安全措施和实际应用案例,为开发者提供了全面的技术指导和实践经验。通过这些案例,可以深入理解VoiceHelper系统的设计思路和应用场景。