1. 引擎模块 (Engine Module)

1.1 LLMEngine 架构

VLLM V1采用分层的引擎架构,主要组件包括:

graph TB
    A[LLMEngine] --> B[Processor]
    A --> C[EngineCoreClient]
    A --> D[OutputProcessor]
    
    C --> E[EngineCore]
    E --> F[Scheduler]
    E --> G[ModelExecutor]
    
    F --> H[RequestQueue]
    F --> I[KVCacheManager]
    G --> J[Workers]
    
    style A fill:#e1f5fe
    style E fill:#f3e5f5
    style F fill:#fff3e0
    style G fill:#e8f5e8

1.1.1 LLMEngine 类详细分析

文件位置: vllm/v1/engine/llm_engine.py

核心职责

  • 统筹整个推理流程
  • 管理请求生命周期
  • 协调各个子模块

关键方法

class LLMEngine:
    """Legacy LLMEngine for backwards compatibility."""
    
    def __init__(
        self,
        vllm_config: VllmConfig,
        executor_class: type[Executor],
        log_stats: bool,
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
        stat_loggers: Optional[list[StatLoggerFactory]] = None,
        mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
        use_cached_outputs: bool = False,
        multiprocess_mode: bool = False,
    ) -> None:
        """
        初始化LLM引擎
        
        Args:
            vllm_config: VLLM配置对象,包含模型、缓存、并行等配置
            executor_class: 执行器类,负责模型推理执行
            log_stats: 是否记录统计信息
            usage_context: 使用上下文,用于遥测和监控
            stat_loggers: 自定义统计记录器列表
            mm_registry: 多模态注册表,管理多模态处理器
            use_cached_outputs: 是否使用缓存输出
            multiprocess_mode: 是否使用多进程模式
        """
        
        # 配置存储
        self.vllm_config = vllm_config
        self.model_config = vllm_config.model_config
        self.cache_config = vllm_config.cache_config
        
        # 分布式处理组初始化
        if not multiprocess_mode and parallel_config.data_parallel_size > 1:
            self.dp_group = parallel_config.stateless_init_dp_group()
            
        # 初始化tokenizer
        if not self.model_config.skip_tokenizer_init:
            self.tokenizer = init_tokenizer_from_configs(
                model_config=vllm_config.model_config)
                
        # 初始化处理器组件
        self.processor = Processor(
            vllm_config=vllm_config,
            tokenizer=self.tokenizer, 
            mm_registry=mm_registry)
            
        # 初始化输出处理器
        self.output_processor = OutputProcessor(
            self.tokenizer, log_stats=self.log_stats)
            
        # 初始化引擎核心客户端
        self.engine_core = EngineCoreClient.make_client(
            multiprocess_mode=multiprocess_mode,
            asyncio_mode=False,
            vllm_config=vllm_config,
            executor_class=executor_class,
            log_stats=self.log_stats)

关键功能实现

    def add_request(
        self,
        request_id: str,
        prompt: PromptType,
        params: Union[SamplingParams, PoolingParams],
        *,
        lora_request: Optional[LoRARequest] = None,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
        priority: int = 0,
    ) -> None:
        """
        添加新请求到引擎处理队列
        
        Args:
            request_id: 请求唯一标识符
            prompt: 输入提示,可以是字符串或字典格式
            params: 采样或池化参数
            lora_request: LoRA适配器请求(可选)
            tokenization_kwargs: tokenization参数字典
            priority: 请求优先级
        
        处理流程:
        1. 使用Processor预处理输入
        2. 验证参数合法性
        3. 创建EngineCoreRequest
        4. 提交到EngineCore处理队列
        """
        
        # 预处理输入
        processed_inputs = self.processor.process_request(
            request_id=request_id,
            prompt=prompt,
            params=params,
            lora_request=lora_request,
            tokenization_kwargs=tokenization_kwargs)
            
        # 创建核心请求
        engine_core_request = EngineCoreRequest(
            request_id=request_id,
            inputs=processed_inputs,
            priority=priority,
            arrival_time=time.time())
            
        # 提交到引擎核心
        self.engine_core.add_request(engine_core_request)

    def step(self) -> list[Union[RequestOutput, PoolingRequestOutput]]:
        """
        执行一个推理步骤
        
        Returns:
            完成的请求输出列表
            
        处理流程:
        1. 从EngineCore获取完成的输出
        2. 通过OutputProcessor后处理
        3. 返回RequestOutput对象列表
        """
        # 获取引擎核心输出
        engine_core_outputs = self.engine_core.step()
        
        # 后处理输出
        request_outputs = []
        for core_output in engine_core_outputs:
            request_output = self.output_processor.process_output(core_output)
            request_outputs.append(request_output)
            
        return request_outputs

1.2 Processor 模块

文件位置: vllm/v1/engine/processor.py

核心职责

  • 预处理用户输入
  • Token化处理
  • 多模态数据处理
  • 参数验证和标准化

1.2.1 Processor 类详细分析

class Processor:
    """
    输入处理器,负责将用户输入转换为引擎可处理的格式
    """
    
    def __init__(
        self,
        vllm_config: VllmConfig,
        tokenizer: AnyTokenizer,
        mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
    ):
        """
        初始化处理器
        
        Args:
            vllm_config: VLLM配置对象
            tokenizer: 分词器实例
            mm_registry: 多模态注册表
        """
        self.vllm_config = vllm_config
        self.model_config = vllm_config.model_config
        self.tokenizer = tokenizer
        
        # 初始化多模态处理器缓存
        self.mm_processor_cache = processor_cache_from_config(
            vllm_config, mm_registry)
            
        # 初始化输入预处理器
        self.input_preprocessor = InputPreprocessor(
            self.model_config,
            self.tokenizer,
            mm_registry,
            mm_processor_cache=self.mm_processor_cache)

关键方法实现

    def process_request(
        self,
        request_id: str,
        prompt: PromptType,
        params: Union[SamplingParams, PoolingParams],
        *,
        lora_request: Optional[LoRARequest] = None,
        tokenization_kwargs: Optional[dict[str, Any]] = None,
    ) -> ProcessorInputs:
        """
        处理单个请求
        
        Args:
            request_id: 请求ID
            prompt: 用户输入提示
            params: 采样/池化参数
            lora_request: LoRA请求
            tokenization_kwargs: tokenization参数
            
        Returns:
            ProcessorInputs: 处理后的输入对象
            
        处理流程:
        1. 参数验证
        2. 输入预处理和token化
        3. 多模态数据处理
        4. 结构化输出验证
        5. 返回标准化的ProcessorInputs对象
        """
        
        # 验证参数
        self._validate_params(params)
        
        # 预处理输入
        preprocessed = self.input_preprocessor.preprocess(
            prompt, 
            request_id=request_id,
            lora_request=lora_request)
            
        # 处理多模态数据
        if preprocessed.multi_modal_data:
            mm_inputs = self._process_multimodal_data(
                preprocessed.multi_modal_data)
        else:
            mm_inputs = None
            
        # 创建返回对象
        return ProcessorInputs(
            request_id=request_id,
            prompt_token_ids=preprocessed.prompt_token_ids,
            prompt=preprocessed.prompt,
            multi_modal_inputs=mm_inputs,
            params=params,
            lora_request=lora_request)

    def _validate_sampling_params(self, params: SamplingParams) -> None:
        """
        验证采样参数合法性
        
        检查项目:
        - 结构化输出参数
        - logit_bias参数范围
        - 支持的参数特性
        """
        # 验证结构化输出
        self._validate_structured_output(params)
        
        # 验证logit_bias
        self._validate_logit_bias(params)
        
        # 检查不支持的参数
        if params.best_of is not None and params.best_of > 1:
            raise ValueError("vLLM V1 does not yet support best_of.")
            
        if params.logits_processors:
            raise ValueError("vLLM V1 does not support per request "
                           "user provided logits processors.")

1.3 EngineCore 模块

文件位置: vllm/v1/engine/core.py

核心职责

  • 请求调度与批处理
  • 模型执行协调
  • KV缓存管理
  • 输出收集

1.3.1 架构设计

graph LR
    A[EngineCoreRequest] --> B[Scheduler]
    B --> C[ExecutionQueue]
    C --> D[ModelExecutor]
    D --> E[Workers]
    E --> F[AttentionBackend]
    F --> G[KVCache]
    
    H[OutputCollector] --> I[EngineCoreOutput]
    
    style B fill:#fff3e0
    style D fill:#e8f5e8
    style F fill:#e1f5fe

2. 调度器模块 (Scheduler Module)

2.1 调度器架构

文件位置: vllm/v1/core/sched/scheduler.py

调度器是VLLM的核心组件,负责决定哪些请求可以批量执行:

2.1.1 核心调度策略

class Scheduler:
    """
    V1调度器,负责请求调度和批处理决策
    """
    
    def __init__(self, vllm_config: VllmConfig):
        """
        初始化调度器
        
        Args:
            vllm_config: 包含调度、缓存、模型配置的完整配置对象
        """
        self.model_config = vllm_config.model_config
        self.cache_config = vllm_config.cache_config
        self.scheduler_config = vllm_config.scheduler_config
        
        # 初始化请求队列
        self.request_queue = RequestQueue()
        
        # 初始化KV缓存管理器
        self.kv_cache_manager = KVCacheManager(vllm_config)
        
        # 调度策略参数
        self.max_batch_size = self.scheduler_config.max_num_seqs
        self.max_tokens = self.scheduler_config.max_num_batched_tokens

调度算法实现

    def schedule(self) -> SchedulerOutput:
        """
        执行一轮调度,决定哪些请求可以执行
        
        Returns:
            SchedulerOutput: 包含可执行请求批次的调度结果
            
        调度策略:
        1. 优先处理预填充请求(新请求)
        2. 继续处理解码请求(生成中的请求)
        3. 考虑内存预算约束
        4. 支持抢占式调度
        """
        
        # 获取内存预算
        available_memory = self.kv_cache_manager.get_available_memory()
        
        # 收集可执行的请求
        prefill_requests = []
        decode_requests = []
        
        # 处理预填充请求(新请求)
        for request in self.request_queue.get_waiting_requests():
            estimated_memory = self._estimate_memory_usage(request)
            if available_memory >= estimated_memory:
                prefill_requests.append(request)
                available_memory -= estimated_memory
                
        # 处理解码请求(继续生成)
        for request in self.request_queue.get_running_requests():
            estimated_memory = self._estimate_decode_memory(request)
            if available_memory >= estimated_memory:
                decode_requests.append(request)
                available_memory -= estimated_memory
                
        # 创建调度输出
        return SchedulerOutput(
            prefill_requests=prefill_requests,
            decode_requests=decode_requests,
            preempted_requests=self._handle_preemption(),
            scheduler_metrics=self._collect_metrics())

    def _estimate_memory_usage(self, request: EngineCoreRequest) -> int:
        """
        估算请求的KV缓存内存使用量
        
        Args:
            request: 引擎核心请求对象
            
        Returns:
            估计的内存使用量(以token为单位)
            
        估算策略:
        1. 基于prompt长度和最大生成长度
        2. 考虑注意力头数和隐藏维度
        3. 加入安全边际
        """
        prompt_length = len(request.inputs.prompt_token_ids)
        max_new_tokens = request.inputs.params.max_tokens or 256
        
        # 计算总序列长度
        total_length = prompt_length + max_new_tokens
        
        # KV缓存内存 = 序列长度 × 层数 × 头数 × 头维度 × 2(K+V) × 数据类型大小
        memory_per_token = (
            self.model_config.get_num_layers() *
            self.model_config.get_num_kv_heads() *
            self.model_config.get_head_size() * 
            2 *  # K and V
            self._get_dtype_size()
        )
        
        return total_length * memory_per_token

2.2 KV缓存管理器

文件位置: vllm/v1/core/kv_cache_manager.py

2.2.1 PagedAttention实现

class KVCacheManager:
    """
    KV缓存管理器,实现PagedAttention算法
    """
    
    def __init__(self, vllm_config: VllmConfig):
        """
        初始化KV缓存管理器
        
        Args:
            vllm_config: VLLM配置对象
        """
        self.cache_config = vllm_config.cache_config
        self.model_config = vllm_config.model_config
        
        # 页面配置
        self.page_size = self.cache_config.block_size
        self.num_gpu_blocks = self.cache_config.num_gpu_blocks
        self.num_cpu_blocks = self.cache_config.num_cpu_blocks
        
        # 初始化块池
        self.gpu_block_pool = BlockPool(
            num_blocks=self.num_gpu_blocks,
            block_size=self.page_size,
            device="cuda")
            
        self.cpu_block_pool = BlockPool(
            num_blocks=self.num_cpu_blocks, 
            block_size=self.page_size,
            device="cpu")
            
        # 序列到块映射
        self.seq_to_blocks: dict[str, list[int]] = {}
        
        # 前缀缓存
        self.prefix_cache: dict[str, list[int]] = {}

    def allocate_blocks(self, seq_id: str, num_tokens: int) -> list[int]:
        """
        为序列分配KV缓存块
        
        Args:
            seq_id: 序列标识符
            num_tokens: 需要缓存的token数量
            
        Returns:
            分配的块ID列表
            
        分配策略:
        1. 计算所需块数
        2. 检查前缀缓存可重用性
        3. 从块池分配新块
        4. 更新序列-块映射
        """
        # 计算所需块数
        num_blocks = (num_tokens + self.page_size - 1) // self.page_size
        
        # 检查前缀缓存
        reusable_blocks = self._find_reusable_prefix(seq_id, num_tokens)
        needed_blocks = num_blocks - len(reusable_blocks)
        
        # 分配新块
        new_blocks = []
        for _ in range(needed_blocks):
            if self.gpu_block_pool.has_available():
                block_id = self.gpu_block_pool.allocate()
                new_blocks.append(block_id)
            else:
                # GPU内存不足,尝试CPU卸载或抢占
                raise OutOfMemoryError("GPU KV cache exhausted")
                
        # 合并块列表
        all_blocks = reusable_blocks + new_blocks
        self.seq_to_blocks[seq_id] = all_blocks
        
        return all_blocks

    def _find_reusable_prefix(self, seq_id: str, num_tokens: int) -> list[int]:
        """
        查找可重用的前缀缓存块
        
        前缀缓存策略:
        1. 基于prompt hash查找匹配前缀
        2. 共享相同前缀的KV缓存块
        3. 支持部分前缀匹配
        """
        # 实现前缀匹配逻辑
        # 这里简化为返回空列表
        return []

3. 模型执行器模块 (Model Executor Module)

3.1 ModelExecutor 架构

文件位置: vllm/model_executor/

模型执行器负责协调分布式模型推理:

3.1.1 执行器架构图

graph TB
    A[ModelExecutor] --> B[WorkerManager]
    B --> C[GPU_Worker_0]
    B --> D[GPU_Worker_1]
    B --> E[GPU_Worker_N]
    
    C --> F[ModelRunner]
    D --> G[ModelRunner]  
    E --> H[ModelRunner]
    
    F --> I[Model]
    G --> J[Model]
    H --> K[Model]
    
    I --> L[AttentionLayer]
    I --> M[FFNLayer]
    I --> N[QuantizationLayer]
    
    style A fill:#e8f5e8
    style B fill:#fff3e0
    style F fill:#e1f5fe

3.1.2 核心实现

class ModelExecutor:
    """
    模型执行器,协调分布式模型推理
    """
    
    def __init__(self, vllm_config: VllmConfig):
        """
        初始化模型执行器
        
        Args:
            vllm_config: VLLM配置对象
        """
        self.model_config = vllm_config.model_config
        self.parallel_config = vllm_config.parallel_config
        self.device_config = vllm_config.device_config
        
        # 初始化工作器管理器
        self.worker_manager = WorkerManager(vllm_config)
        
        # 分布式设置
        self.tensor_parallel_size = self.parallel_config.tensor_parallel_size
        self.pipeline_parallel_size = self.parallel_config.pipeline_parallel_size

    def execute_model(
        self,
        model_inputs: ModelInputs,
    ) -> ModelOutputs:
        """
        执行模型前向传播
        
        Args:
            model_inputs: 模型输入,包含token_ids、位置信息等
            
        Returns:
            ModelOutputs: 模型输出,包含logits、hidden_states等
            
        执行流程:
        1. 准备输入数据
        2. 分发到各个worker
        3. 并行执行模型前向传播
        4. 收集和聚合输出
        """
        
        # 准备分布式输入
        distributed_inputs = self._prepare_distributed_inputs(model_inputs)
        
        # 并行执行
        worker_outputs = self.worker_manager.execute_model(distributed_inputs)
        
        # 聚合输出
        aggregated_outputs = self._aggregate_outputs(worker_outputs)
        
        return aggregated_outputs

    def _prepare_distributed_inputs(
        self, 
        model_inputs: ModelInputs
    ) -> dict[int, ModelInputs]:
        """
        为分布式执行准备输入数据
        
        处理内容:
        1. 张量并行切分
        2. 管道并行分段
        3. 数据并行复制
        """
        distributed_inputs = {}
        
        if self.tensor_parallel_size > 1:
            # 张量并行:切分嵌入和注意力权重
            for worker_id in range(self.tensor_parallel_size):
                worker_inputs = self._shard_inputs_for_tp(
                    model_inputs, worker_id)
                distributed_inputs[worker_id] = worker_inputs
        else:
            distributed_inputs[0] = model_inputs
            
        return distributed_inputs

4. Worker 模块

4.1 Worker 基类

文件位置: vllm/v1/worker/worker_base.py

4.1.1 Worker 架构

class WorkerBase(WorkerBaseV0):
    """
    V1 Worker抽象基类,定义worker的通用接口
    """
    
    def __init__(
        self,
        vllm_config: VllmConfig,
        local_rank: int,
        rank: int,  
        distributed_init_method: str,
        is_driver_worker: bool = False,
    ):
        """
        初始化Worker基类
        
        Args:
            vllm_config: VLLM完整配置
            local_rank: 本地设备索引
            rank: 全局rank
            distributed_init_method: 分布式初始化方法
            is_driver_worker: 是否为驱动worker
        """
        super().__init__(vllm_config=vllm_config)
        
        # 基本属性设置
        self.local_rank = local_rank
        self.rank = rank
        self.distributed_init_method = distributed_init_method
        self.is_driver_worker = is_driver_worker
        
        # 设备和模型状态
        self.device: Optional[torch.device] = None
        self.model_runner: Optional[nn.Module] = None

    def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
        """
        获取KV缓存规格说明
        
        Returns:
            KV缓存规格字典,包含:
            - 缓存块大小
            - 数据类型
            - 设备位置
            - 内存布局
        """
        raise NotImplementedError("Subclasses must implement get_kv_cache_spec")

    def compile_or_warm_up_model(self) -> None:
        """
        编译或预热模型
        
        功能:
        1. CUDA Graph编译
        2. 内核预热
        3. 内存预分配
        4. 性能优化设置
        """
        raise NotImplementedError("Subclasses must implement compile_or_warm_up_model")

4.2 GPU Worker

文件位置: vllm/v1/worker/gpu_worker.py

GPU Worker是最常用的worker实现:

class GPUWorker(WorkerBase):
    """
    GPU Worker实现,负责在GPU上执行模型推理
    """
    
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        
        # GPU设备初始化
        self.device = torch.device(f"cuda:{self.local_rank}")
        torch.cuda.set_device(self.device)
        
        # 初始化模型运行器
        self.model_runner = GPUModelRunner(
            vllm_config=self.vllm_config,
            device=self.device,
            rank=self.rank)

    def execute_model(
        self,
        model_inputs: ModelInputs,
    ) -> ModelOutputs:
        """
        在GPU上执行模型推理
        
        Args:
            model_inputs: 模型输入数据
            
        Returns:
            模型输出结果
            
        执行步骤:
        1. 数据传输到GPU
        2. 执行前向传播
        3. 结果收集和同步
        """
        return self.model_runner.execute_model(model_inputs)

    def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
        """
        获取GPU KV缓存规格
        """
        return {
            "default": KVCacheSpec(
                block_size=self.cache_config.block_size,
                dtype=self.model_config.dtype,
                device="cuda",
                layout="paged"
            )
        }

5. 注意力后端模块 (Attention Backend)

5.1 注意力后端架构

文件位置: vllm/v1/attention/backends/

VLLM支持多种注意力后端实现:

5.1.1 后端选择策略

graph TB
    A[AttentionSelector] --> B{硬件类型}
    B -->|NVIDIA GPU| C[FlashAttention]
    B -->|AMD GPU| D[ROCmAttention]  
    B -->|CPU| E[CPUAttention]
    B -->|TPU| F[PallasAttention]
    
    C --> G[FlashAttn2/3]
    C --> H[FlashInfer]
    C --> I[TritonAttention]
    
    style A fill:#e1f5fe
    style C fill:#f3e5f5

5.1.2 FlashAttention后端实现

class FlashAttentionBackend(AttentionBackend):
    """
    FlashAttention后端实现,提供高效的注意力计算
    """
    
    def __init__(self, model_config: ModelConfig):
        """
        初始化FlashAttention后端
        
        Args:
            model_config: 模型配置,包含注意力参数
        """
        self.model_config = model_config
        self.head_size = model_config.get_head_size()
        self.num_heads = model_config.get_num_attention_heads()
        self.num_kv_heads = model_config.get_num_kv_heads()
        
        # 检查FlashAttention可用性
        self._check_flash_attn_availability()

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor, 
        value: torch.Tensor,
        kv_cache: KVCache,
        attn_metadata: AttentionMetadata,
    ) -> torch.Tensor:
        """
        执行注意力计算
        
        Args:
            query: 查询张量 [batch_size, seq_len, num_heads, head_size]
            key: 键张量 [batch_size, seq_len, num_kv_heads, head_size]
            value: 值张量 [batch_size, seq_len, num_kv_heads, head_size]
            kv_cache: KV缓存对象
            attn_metadata: 注意力元数据
            
        Returns:
            注意力输出张量
            
        计算流程:
        1. PagedAttention前处理
        2. FlashAttention计算
        3. 结果后处理
        """
        # 处理PagedAttention
        if attn_metadata.is_paged:
            return self._paged_attention_forward(
                query, key, value, kv_cache, attn_metadata)
        else:
            return self._standard_attention_forward(
                query, key, value, attn_metadata)

    def _paged_attention_forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor, 
        kv_cache: KVCache,
        attn_metadata: AttentionMetadata,
    ) -> torch.Tensor:
        """
        PagedAttention前向计算
        
        特点:
        1. 支持非连续KV缓存
        2. 动态序列长度
        3. 内存高效
        """
        # 获取页表信息
        block_tables = attn_metadata.block_tables
        block_size = attn_metadata.block_size
        
        # 调用PagedAttention内核
        output = paged_attention_v2(
            query=query,
            key_cache=kv_cache.key_cache,
            value_cache=kv_cache.value_cache,
            block_tables=block_tables,
            seq_lens=attn_metadata.seq_lens,
            block_size=block_size,
            max_seq_len=attn_metadata.max_seq_len)
            
        return output

6. 核心数据流分析

6.1 请求处理时序图

sequenceDiagram
    participant User as 用户应用
    participant LLM as LLM类
    participant Proc as Processor 
    participant Engine as EngineCore
    participant Sched as Scheduler
    participant KVMgr as KVCacheManager
    participant Exec as ModelExecutor
    participant Worker as GPUWorker
    participant Attn as AttentionBackend

    User->>LLM: generate(prompts, params)
    LLM->>Proc: process_request()
    
    Note over Proc: 输入预处理和验证
    Proc->>Proc: validate_params()
    Proc->>Proc: tokenize_inputs()
    Proc->>Proc: process_multimodal()
    
    Proc->>Engine: add_request()
    
    loop 推理循环
        Engine->>Sched: schedule()
        
        Note over Sched: 调度决策
        Sched->>KVMgr: check_memory()
        KVMgr-->>Sched: available_blocks
        Sched->>Sched: select_requests()
        
        Sched->>Exec: execute_model()
        
        Note over Exec: 分布式执行
        Exec->>Worker: forward()
        Worker->>Attn: attention()
        
        Note over Attn: PagedAttention计算
        Attn->>Attn: paged_attention_v2()
        
        Attn-->>Worker: attention_output
        Worker-->>Exec: model_output
        Exec-->>Sched: execution_result
        
        Sched->>KVMgr: update_cache()
        Sched-->>Engine: scheduler_output
    end
    
    Engine-->>LLM: request_outputs
    LLM-->>User: generated_texts

6.2 内存管理架构

graph TB
    A[GPU Memory Pool] --> B[KV Cache Manager]
    B --> C[Block Pool]
    C --> D[GPU Blocks]
    C --> E[CPU Blocks]
    
    F[Sequence Manager] --> G[Sequence-to-Block Mapping]
    G --> H[Sequence A: Blocks [1,3,7]]
    G --> I[Sequence B: Blocks [2,4,8]]
    
    J[Prefix Cache] --> K[Hash-to-Block Mapping]
    K --> L[Common Prefix: Blocks [1,2]]
    
    D --> M[Block 1: Page Data]
    D --> N[Block 2: Page Data] 
    D --> O[Block N: Page Data]
    
    style A fill:#e8f5e8
    style B fill:#fff3e0
    style F fill:#e1f5fe
    style J fill:#f3e5f5

这个核心模块分析展示了VLLM V1架构的内部工作原理,包括各个组件的职责分工、关键算法实现和数据流转过程。通过这些详细的分析,开发者可以深入理解VLLM的技术内核和设计哲学。