TensorRT-LLM-08-AutoParallel模块-深度剖析

一、模块概览

1.1 模块定位

AutoParallel 模块是TensorRT-LLM的自动并行化系统,能够自动分析模型结构并生成最优的多GPU分布式执行策略,无需手动配置Tensor Parallel和Pipeline Parallel参数。

核心职责:

  • 策略搜索:自动搜索最优并行策略
  • 模型分析:分析模型计算图和内存需求
  • 通信优化:最小化GPU间通信开销
  • 负载均衡:平衡各GPU的计算和内存负载
  • 动态适配:根据硬件配置自动调整策略

1.2 并行策略类型

并行类型 缩写 原理 适用场景 通信模式
Tensor Parallel TP 权重按维度切分 大模型单层加速 AllReduce
Pipeline Parallel PP 层按序列切分 超深模型 P2P
Data Parallel DP 数据批次切分 大批次训练 AllReduce
Expert Parallel EP MoE专家切分 MoE模型 AllToAll
Context Parallel CP 序列长度切分 超长序列 P2P

1.3 模块架构

tensorrt_llm/auto_parallel/
├── __init__.py                     # 模块导出
├── config.py                       # AutoParallel配置
├── tensor_parallel.py              # TP策略实现
├── pipeline_parallel.py            # PP策略实现
├── sharding_strategy.py            # 分片策略
├── cost_model.py                   # 性能开销模型
├── search_algorithm.py             # 策略搜索算法
├── placement_strategy.py           # 设备放置策略
└── cluster_info.py                 # 集群硬件信息

1.4 自动并行流程

模型定义 → 图分析 → 策略搜索 → 开销估计 → 最优选择 → 模型变换 → 分布式执行
    ↓         ↓         ↓         ↓         ↓         ↓         ↓
  网络结构   计算图   候选策略   通信+计算   Pareto最优  重写模型   多GPU推理

二、核心API详细剖析

2.1 AutoParallelConfig配置

2.1.1 类定义

@dataclass
class AutoParallelConfig:
    """
    自动并行配置
    
    定义自动并行化的约束条件和优化目标
    """
    
    # 硬件配置
    world_size: int = 1                    # 总GPU数量
    max_tp_size: int = None               # 最大TP大小
    max_pp_size: int = None               # 最大PP大小
    
    # 搜索约束
    enable_tensor_parallel: bool = True    # 启用TP
    enable_pipeline_parallel: bool = True  # 启用PP
    enable_expert_parallel: bool = False   # 启用EP(MoE)
    enable_context_parallel: bool = False  # 启用CP(长序列)
    
    # 优化目标
    optimization_target: str = "latency"   # "latency", "throughput", "memory"
    memory_limit_per_gpu: int = None      # 每GPU内存限制(GB)
    
    # 搜索算法
    search_algorithm: str = "greedy"       # "greedy", "dynamic_programming", "genetic"
    max_search_time: int = 300            # 最大搜索时间(秒)
    
    # 通信配置
    communication_backend: str = "nccl"    # "nccl", "mpi"
    use_sequence_parallel: bool = False    # 序列并行优化
    
    def __post_init__(self):
        # 自动推断约束
        if self.max_tp_size is None:
            self.max_tp_size = min(8, self.world_size)
        if self.max_pp_size is None:
            self.max_pp_size = self.world_size

2.1.2 配置示例

# 1. 延迟优化配置(推理场景)
latency_config = AutoParallelConfig(
    world_size=8,
    optimization_target="latency",
    enable_tensor_parallel=True,
    enable_pipeline_parallel=False,  # 推理时PP延迟高
    search_algorithm="greedy",
)

# 2. 吞吐量优化配置(训练场景)
throughput_config = AutoParallelConfig(
    world_size=32,
    optimization_target="throughput",
    enable_tensor_parallel=True,
    enable_pipeline_parallel=True,
    memory_limit_per_gpu=80,  # A100 80GB
)

# 3. 内存优化配置(超大模型)
memory_config = AutoParallelConfig(
    world_size=16,
    optimization_target="memory",
    max_tp_size=4,
    max_pp_size=8,
    enable_sequence_parallel=True,
)

2.2 auto_parallel()主函数

2.2.1 函数签名

def auto_parallel(
    model: PretrainedModel,               # 待并行化模型
    config: AutoParallelConfig,           # 自动并行配置
    sample_input: Optional[dict] = None,  # 样本输入(用于分析)
    cluster_info: Optional[ClusterInfo] = None, # 集群信息
    **kwargs
) -> Tuple[PretrainedModel, Mapping]:
    """
    自动并行化模型
    
    Args:
        model: 预训练模型
        config: 自动并行配置
        sample_input: 样本输入数据
        cluster_info: 硬件集群信息
        
    Returns:
        parallel_model: 并行化后的模型
        mapping: 并行配置映射
    """

2.2.2 核心实现

def auto_parallel(model, config, sample_input=None, cluster_info=None):
    # 1. 集群信息收集
    if cluster_info is None:
        cluster_info = collect_cluster_info(config.world_size)
    
    # 2. 模型分析
    model_analyzer = ModelAnalyzer(model, sample_input)
    computation_graph = model_analyzer.build_computation_graph()
    memory_profile = model_analyzer.analyze_memory_usage()
    
    # 3. 策略搜索
    strategy_searcher = StrategySearcher(config, cluster_info)
    candidate_strategies = strategy_searcher.generate_candidates(
        computation_graph, memory_profile
    )
    
    # 4. 开销估计
    cost_estimator = CostEstimator(cluster_info)
    strategy_costs = []
    
    for strategy in candidate_strategies:
        cost = cost_estimator.estimate_cost(
            strategy, computation_graph, memory_profile
        )
        strategy_costs.append((strategy, cost))
    
    # 5. 最优策略选择
    optimal_strategy = select_optimal_strategy(
        strategy_costs, config.optimization_target
    )
    
    # 6. 模型变换
    model_transformer = ModelTransformer(optimal_strategy)
    parallel_model = model_transformer.transform(model)
    
    # 7. 生成映射配置
    mapping = generate_mapping_from_strategy(optimal_strategy, config.world_size)
    
    return parallel_model, mapping

class ModelAnalyzer:
    """
    模型分析器:分析计算图和内存使用
    """
    def __init__(self, model, sample_input):
        self.model = model
        self.sample_input = sample_input
    
    def build_computation_graph(self):
        """
        构建计算图
        """
        graph = ComputationGraph()
        
        # 1. 遍历模型层
        for name, module in self.model.named_modules():
            if isinstance(module, (Linear, Attention, MLP)):
                # 1.1 添加计算节点
                node = ComputationNode(
                    name=name,
                    module_type=type(module).__name__,
                    input_shape=self._get_input_shape(module),
                    output_shape=self._get_output_shape(module),
                    flops=self._estimate_flops(module),
                    memory=self._estimate_memory(module),
                )
                graph.add_node(node)
                
                # 1.2 添加依赖边
                dependencies = self._find_dependencies(name)
                for dep in dependencies:
                    graph.add_edge(dep, node)
        
        return graph
    
    def analyze_memory_usage(self):
        """
        分析内存使用模式
        """
        profile = MemoryProfile()
        
        # 1. 权重内存
        for name, param in self.model.named_parameters():
            profile.add_weight_memory(
                name=name,
                size=param.numel() * param.element_size(),
                shape=param.shape,
            )
        
        # 2. 激活内存(需要前向传播分析)
        if self.sample_input is not None:
            with MemoryProfiler() as profiler:
                _ = self.model(**self.sample_input)
            
            for event in profiler.events:
                if event.event_type == "activation":
                    profile.add_activation_memory(
                        name=event.name,
                        size=event.memory_size,
                        peak_memory=event.peak_memory,
                    )
        
        return profile

2.3 策略搜索算法

2.3.1 贪心搜索算法

class GreedyStrategySearcher:
    """
    贪心策略搜索器
    
    基于局部最优选择构建全局策略
    """
    def __init__(self, config, cluster_info):
        self.config = config
        self.cluster_info = cluster_info
    
    def search(self, computation_graph, memory_profile):
        """
        贪心搜索最优策略
        """
        strategy = ParallelStrategy()
        
        # 1. 按层顺序处理
        for layer in computation_graph.topological_sort():
            # 2. 为当前层生成候选并行方案
            candidates = self._generate_layer_candidates(layer)
            
            # 3. 评估每个候选方案
            best_candidate = None
            best_cost = float('inf')
            
            for candidate in candidates:
                # 3.1 检查约束条件
                if not self._check_constraints(candidate, strategy):
                    continue
                
                # 3.2 估计开销
                cost = self._estimate_layer_cost(candidate, layer)
                
                # 3.3 更新最优选择
                if cost < best_cost:
                    best_cost = cost
                    best_candidate = candidate
            
            # 4. 应用最优选择
            if best_candidate is not None:
                strategy.add_layer_strategy(layer.name, best_candidate)
        
        return strategy
    
    def _generate_layer_candidates(self, layer):
        """
        为单层生成并行候选方案
        """
        candidates = []
        
        # 1. Tensor Parallel候选
        if self.config.enable_tensor_parallel:
            for tp_size in range(1, self.config.max_tp_size + 1):
                if self.config.world_size % tp_size == 0:
                    candidates.append(LayerStrategy(
                        layer_name=layer.name,
                        tp_size=tp_size,
                        pp_size=1,
                        strategy_type="tensor_parallel"
                    ))
        
        # 2. Pipeline Parallel候选
        if self.config.enable_pipeline_parallel:
            for pp_size in range(1, self.config.max_pp_size + 1):
                if self.config.world_size % pp_size == 0:
                    candidates.append(LayerStrategy(
                        layer_name=layer.name,
                        tp_size=1,
                        pp_size=pp_size,
                        strategy_type="pipeline_parallel"
                    ))
        
        # 3. 混合并行候选
        for tp_size in range(2, min(8, self.config.world_size) + 1):
            for pp_size in range(2, self.config.world_size // tp_size + 1):
                if tp_size * pp_size <= self.config.world_size:
                    candidates.append(LayerStrategy(
                        layer_name=layer.name,
                        tp_size=tp_size,
                        pp_size=pp_size,
                        strategy_type="hybrid_parallel"
                    ))
        
        return candidates

2.3.2 动态规划搜索

class DPStrategySearcher:
    """
    动态规划策略搜索器
    
    考虑全局最优解,避免贪心算法的局部最优问题
    """
    def search(self, computation_graph, memory_profile):
        """
        动态规划搜索
        """
        layers = computation_graph.topological_sort()
        n_layers = len(layers)
        
        # DP状态:dp[i][state] = 前i层使用state配置的最小开销
        dp = {}
        
        # 1. 初始化:第0层
        candidates_0 = self._generate_layer_candidates(layers[0])
        for candidate in candidates_0:
            state = self._candidate_to_state(candidate)
            dp[(0, state)] = self._estimate_layer_cost(candidate, layers[0])
        
        # 2. 状态转移:逐层计算
        for i in range(1, n_layers):
            layer = layers[i]
            candidates_i = self._generate_layer_candidates(layer)
            
            for candidate in candidates_i:
                state_i = self._candidate_to_state(candidate)
                min_cost = float('inf')
                
                # 2.1 尝试所有前一层状态
                for prev_state in self._get_prev_states(i-1, dp):
                    if not self._can_transition(prev_state, state_i):
                        continue
                    
                    # 2.2 计算转移开销
                    transition_cost = self._estimate_transition_cost(
                        prev_state, state_i, layers[i-1], layer
                    )
                    
                    total_cost = dp[(i-1, prev_state)] + \
                               self._estimate_layer_cost(candidate, layer) + \
                               transition_cost
                    
                    min_cost = min(min_cost, total_cost)
                
                # 2.3 更新DP表
                if min_cost < float('inf'):
                    dp[(i, state_i)] = min_cost
        
        # 3. 回溯最优路径
        optimal_strategy = self._backtrack_optimal_path(dp, layers)
        
        return optimal_strategy
    
    def _estimate_transition_cost(self, prev_state, curr_state, prev_layer, curr_layer):
        """
        估计状态转移开销(主要是通信开销)
        """
        cost = 0.0
        
        # 1. TP切换开销
        if prev_state.tp_size != curr_state.tp_size:
            # 需要AllGather/ReduceScatter通信
            data_size = prev_layer.output_size
            bandwidth = self.cluster_info.inter_gpu_bandwidth
            cost += data_size / bandwidth
        
        # 2. PP切换开销
        if prev_state.pp_size != curr_state.pp_size:
            # Pipeline bubble开销
            cost += self._estimate_pipeline_bubble_cost(prev_state, curr_state)
        
        return cost

2.4 开销估计模型

2.4.1 计算开销估计

class ComputationCostEstimator:
    """
    计算开销估计器
    """
    def __init__(self, cluster_info):
        self.cluster_info = cluster_info
        
        # GPU性能参数(TFLOPS)
        self.gpu_peak_flops = {
            "H100": 989,     # FP16 Tensor Core
            "A100": 312,     # FP16 Tensor Core  
            "V100": 125,     # FP16 Tensor Core
        }
    
    def estimate_layer_compute_time(self, layer, strategy):
        """
        估计单层计算时间
        """
        # 1. 获取层的FLOPS
        total_flops = layer.flops
        
        # 2. 考虑并行化
        if strategy.strategy_type == "tensor_parallel":
            # TP将计算分配到多个GPU
            parallel_flops = total_flops / strategy.tp_size
        elif strategy.strategy_type == "pipeline_parallel":
            # PP不减少单层计算
            parallel_flops = total_flops
        else:
            parallel_flops = total_flops
        
        # 3. 计算时间
        gpu_type = self.cluster_info.gpu_type
        peak_flops = self.gpu_peak_flops[gpu_type] * 1e12  # 转换为FLOPS
        efficiency = 0.8  # 实际效率(经验值)
        
        compute_time = parallel_flops / (peak_flops * efficiency)
        
        return compute_time
    
    def estimate_attention_cost(self, layer, strategy, sequence_length):
        """
        特殊处理Attention层开销
        """
        if not isinstance(layer.module, Attention):
            return self.estimate_layer_compute_time(layer, strategy)
        
        # 1. Attention FLOPS: 4 * batch * seq_len^2 * hidden_size
        batch_size = layer.input_shape[0]
        hidden_size = layer.input_shape[-1]
        
        attention_flops = 4 * batch_size * (sequence_length ** 2) * hidden_size
        
        # 2. 考虑Flash Attention优化
        if layer.use_flash_attention:
            # Flash Attention减少约30%计算开销
            attention_flops *= 0.7
        
        # 3. 考虑GQA优化
        if hasattr(layer.module, 'num_kv_heads'):
            num_attention_heads = layer.module.num_attention_heads
            num_kv_heads = layer.module.num_kv_heads
            if num_kv_heads < num_attention_heads:
                # GQA减少KV计算
                gqa_ratio = num_kv_heads / num_attention_heads
                attention_flops *= (0.5 + 0.5 * gqa_ratio)  # 近似估计
        
        # 4. 计算时间
        return attention_flops / (self.gpu_peak_flops[self.cluster_info.gpu_type] * 1e12 * 0.8)

2.4.2 通信开销估计

class CommunicationCostEstimator:
    """
    通信开销估计器
    """
    def __init__(self, cluster_info):
        self.cluster_info = cluster_info
    
    def estimate_allreduce_cost(self, data_size, num_gpus):
        """
        估计AllReduce通信开销
        
        使用Ring AllReduce算法:
        时间复杂度 = 2 * (N-1) / N * data_size / bandwidth
        其中N是GPU数量
        """
        bandwidth = self.cluster_info.inter_gpu_bandwidth  # GB/s
        
        # Ring AllReduce: 两个阶段,每个阶段传输(N-1)/N的数据
        ring_efficiency = 2 * (num_gpus - 1) / num_gpus
        
        return ring_efficiency * data_size / bandwidth
    
    def estimate_allgather_cost(self, data_size, num_gpus):
        """
        估计AllGather通信开销
        """
        bandwidth = self.cluster_info.inter_gpu_bandwidth
        
        # AllGather: 每个GPU收集所有其他GPU的数据
        allgather_efficiency = (num_gpus - 1) / num_gpus
        
        return allgather_efficiency * data_size / bandwidth
    
    def estimate_point_to_point_cost(self, data_size):
        """
        估计点对点通信开销(Pipeline Parallel使用)
        """
        bandwidth = self.cluster_info.inter_gpu_bandwidth
        latency = self.cluster_info.inter_gpu_latency  # 微秒
        
        # P2P通信 = 延迟 + 传输时间
        transfer_time = data_size / bandwidth
        total_time = latency * 1e-6 + transfer_time
        
        return total_time
    
    def estimate_tensor_parallel_comm_cost(self, layer, tp_size):
        """
        估计Tensor Parallel通信开销
        """
        total_cost = 0.0
        
        if isinstance(layer.module, Attention):
            # 1. QKV投影后需要AllGather(如果使用融合QKV)
            qkv_size = layer.output_size  # 近似
            total_cost += self.estimate_allgather_cost(qkv_size, tp_size)
            
            # 2. Attention输出需要AllReduce
            attn_output_size = layer.input_shape[-1] * layer.input_shape[0] * layer.input_shape[1]
            total_cost += self.estimate_allreduce_cost(attn_output_size, tp_size)
        
        elif isinstance(layer.module, MLP):
            # 1. 第一个线性层输入需要复制(无通信)
            # 2. 第二个线性层输出需要AllReduce
            mlp_output_size = layer.output_size
            total_cost += self.estimate_allreduce_cost(mlp_output_size, tp_size)
        
        return total_cost
    
    def estimate_pipeline_parallel_comm_cost(self, layer, pp_size):
        """
        估计Pipeline Parallel通信开销
        """
        if pp_size == 1:
            return 0.0
        
        # 1. 激活传输:当前层输出 → 下一层输入
        activation_size = layer.output_size
        p2p_cost = self.estimate_point_to_point_cost(activation_size)
        
        # 2. Pipeline bubble开销
        bubble_ratio = 1.0 / pp_size  # 简化估计
        bubble_cost = layer.compute_time * bubble_ratio
        
        return p2p_cost + bubble_cost

三、关键功能深度剖析

3.1 Tensor Parallel自动切分

3.1.1 权重切分策略

class TensorParallelSlicer:
    """
    Tensor Parallel权重切分器
    """
    def __init__(self, tp_size):
        self.tp_size = tp_size
    
    def slice_attention_weights(self, attention_module):
        """
        切分Attention权重
        """
        sliced_module = copy.deepcopy(attention_module)
        
        # 1. QKV权重切分
        if hasattr(attention_module, 'qkv'):
            # 融合QKV:按输出维度切分
            qkv_weight = attention_module.qkv.weight  # [3*hidden, hidden]
            out_features = qkv_weight.shape[0]
            
            # 每个GPU分配 out_features/tp_size
            chunk_size = out_features // self.tp_size
            
            sliced_qkv_weight = qkv_weight[
                rank * chunk_size:(rank + 1) * chunk_size, :
            ]
            
            sliced_module.qkv.weight = Parameter(sliced_qkv_weight)
            
        else:
            # 分离QKV:分别切分
            for proj_name in ['q_proj', 'k_proj', 'v_proj']:
                if hasattr(attention_module, proj_name):
                    proj = getattr(attention_module, proj_name)
                    sliced_weight = self._slice_linear_weight(proj.weight, dim=0)
                    getattr(sliced_module, proj_name).weight = Parameter(sliced_weight)
        
        # 2. 输出投影权重切分
        if hasattr(attention_module, 'o_proj'):
            # 输出投影:按输入维度切分
            o_weight = attention_module.o_proj.weight  # [hidden, hidden]
            sliced_o_weight = self._slice_linear_weight(o_weight, dim=1)
            sliced_module.o_proj.weight = Parameter(sliced_o_weight)
        
        # 3. 调整head数量
        sliced_module.num_attention_heads = attention_module.num_attention_heads // self.tp_size
        if hasattr(attention_module, 'num_key_value_heads'):
            sliced_module.num_key_value_heads = attention_module.num_key_value_heads // self.tp_size
        
        return sliced_module
    
    def slice_mlp_weights(self, mlp_module):
        """
        切分MLP权重
        """
        sliced_module = copy.deepcopy(mlp_module)
        
        # 1. 第一个线性层(扩展层):按输出维度切分
        if hasattr(mlp_module, 'gate_proj') and hasattr(mlp_module, 'up_proj'):
            # SwiGLU: gate和up都需要切分
            gate_weight = mlp_module.gate_proj.weight
            up_weight = mlp_module.up_proj.weight
            
            sliced_gate_weight = self._slice_linear_weight(gate_weight, dim=0)
            sliced_up_weight = self._slice_linear_weight(up_weight, dim=0)
            
            sliced_module.gate_proj.weight = Parameter(sliced_gate_weight)
            sliced_module.up_proj.weight = Parameter(sliced_up_weight)
        
        elif hasattr(mlp_module, 'fc'):
            # 融合gate+up
            fc_weight = mlp_module.fc.weight
            sliced_fc_weight = self._slice_linear_weight(fc_weight, dim=0)
            sliced_module.fc.weight = Parameter(sliced_fc_weight)
        
        # 2. 第二个线性层(压缩层):按输入维度切分
        if hasattr(mlp_module, 'down_proj'):
            down_weight = mlp_module.down_proj.weight
            sliced_down_weight = self._slice_linear_weight(down_weight, dim=1)
            sliced_module.down_proj.weight = Parameter(sliced_down_weight)
        
        elif hasattr(mlp_module, 'proj'):
            proj_weight = mlp_module.proj.weight
            sliced_proj_weight = self._slice_linear_weight(proj_weight, dim=1)
            sliced_module.proj.weight = Parameter(sliced_proj_weight)
        
        return sliced_module
    
    def _slice_linear_weight(self, weight, dim):
        """
        按维度切分线性层权重
        """
        size = weight.shape[dim]
        chunk_size = size // self.tp_size
        rank = get_tensor_parallel_rank()
        
        if dim == 0:
            # 按行切分
            return weight[rank * chunk_size:(rank + 1) * chunk_size, :]
        else:
            # 按列切分
            return weight[:, rank * chunk_size:(rank + 1) * chunk_size]

3.1.2 通信插入

class CommunicationInserter:
    """
    通信操作插入器
    """
    def insert_tensor_parallel_communication(self, model, tp_size):
        """
        为Tensor Parallel插入必要的通信操作
        """
        for name, module in model.named_modules():
            if isinstance(module, Attention):
                # 1. Attention输出后插入AllReduce
                self._insert_allreduce_after_attention(module, tp_size)
            
            elif isinstance(module, MLP):
                # 2. MLP输出后插入AllReduce
                self._insert_allreduce_after_mlp(module, tp_size)
            
            elif isinstance(module, Linear) and self._is_lm_head(name):
                # 3. LM Head后插入AllGather
                self._insert_allgather_after_lm_head(module, tp_size)
    
    def _insert_allreduce_after_attention(self, attention_module, tp_size):
        """
        在Attention输出后插入AllReduce
        """
        original_forward = attention_module.forward
        
        def forward_with_allreduce(*args, **kwargs):
            # 1. 原始前向传播
            output = original_forward(*args, **kwargs)
            
            # 2. AllReduce通信
            if tp_size > 1:
                output = self._all_reduce(output, group=get_tensor_parallel_group())
            
            return output
        
        attention_module.forward = forward_with_allreduce
    
    def _all_reduce(self, tensor, group):
        """
        AllReduce通信原语
        """
        import torch.distributed as dist
        
        # 在实际实现中,这会调用NCCL进行高效通信
        dist.all_reduce(tensor, group=group)
        return tensor

3.2 Pipeline Parallel自动切分

3.2.1 层间依赖分析

class LayerDependencyAnalyzer:
    """
    层间依赖分析器
    """
    def analyze_dependencies(self, model):
        """
        分析模型层间依赖关系
        """
        dependency_graph = nx.DiGraph()
        
        # 1. 构建依赖图
        layer_outputs = {}  # 记录每层的输出变量
        
        for name, module in model.named_modules():
            if self._is_leaf_module(module):
                # 1.1 添加节点
                dependency_graph.add_node(name, module=module)
                
                # 1.2 分析输入依赖
                input_deps = self._find_input_dependencies(name, layer_outputs)
                for dep in input_deps:
                    dependency_graph.add_edge(dep, name)
                
                # 1.3 记录输出变量
                layer_outputs[name] = self._get_output_variables(module)
        
        return dependency_graph
    
    def find_pipeline_cut_points(self, dependency_graph, pp_size):
        """
        寻找Pipeline Parallel的最优切分点
        """
        # 1. 拓扑排序得到层序列
        layer_sequence = list(nx.topological_sort(dependency_graph))
        n_layers = len(layer_sequence)
        
        # 2. 计算每层的计算开销
        layer_costs = {}
        for layer_name in layer_sequence:
            module = dependency_graph.nodes[layer_name]['module']
            layer_costs[layer_name] = self._estimate_computation_cost(module)
        
        # 3. 动态规划寻找最优切分
        return self._find_optimal_cuts_dp(layer_sequence, layer_costs, pp_size)
    
    def _find_optimal_cuts_dp(self, layer_sequence, layer_costs, pp_size):
        """
        使用动态规划寻找最优切分点
        """
        n_layers = len(layer_sequence)
        
        # dp[i][k] = 前i层分成k个stage的最小负载不均衡度
        dp = {}
        cuts = {}  # 记录切分点
        
        # 计算前缀开销
        prefix_costs = [0]
        for layer in layer_sequence:
            prefix_costs.append(prefix_costs[-1] + layer_costs[layer])
        
        # 初始化:1个stage
        for i in range(1, n_layers + 1):
            dp[(i, 1)] = prefix_costs[i]
            cuts[(i, 1)] = []
        
        # 状态转移:k个stage
        for k in range(2, pp_size + 1):
            for i in range(k, n_layers + 1):
                dp[(i, k)] = float('inf')
                
                # 尝试所有可能的最后一个stage起点
                for j in range(k-1, i):
                    # 最后一个stage的开销
                    last_stage_cost = prefix_costs[i] - prefix_costs[j]
                    
                    # 前k-1个stage的最大开销
                    prev_max_cost = dp[(j, k-1)]
                    
                    # 当前配置的最大stage开销
                    max_cost = max(prev_max_cost, last_stage_cost)
                    
                    if max_cost < dp[(i, k)]:
                        dp[(i, k)] = max_cost
                        cuts[(i, k)] = cuts[(j, k-1)] + [j]
        
        # 返回最优切分点
        optimal_cuts = cuts[(n_layers, pp_size)]
        return optimal_cuts

3.2.2 Stage划分

class PipelineStageDivider:
    """
    Pipeline Stage划分器
    """
    def divide_into_stages(self, model, cut_points, pp_size):
        """
        根据切分点将模型划分为Pipeline Stage
        """
        stages = []
        layer_sequence = list(model.named_modules())
        
        # 添加起始和结束点
        boundaries = [0] + cut_points + [len(layer_sequence)]
        
        # 为每个stage创建子模型
        for stage_id in range(pp_size):
            start_idx = boundaries[stage_id]
            end_idx = boundaries[stage_id + 1]
            
            # 提取当前stage的层
            stage_layers = layer_sequence[start_idx:end_idx]
            
            # 创建stage子模型
            stage_model = self._create_stage_model(stage_layers, stage_id)
            stages.append(stage_model)
        
        return stages
    
    def _create_stage_model(self, stage_layers, stage_id):
        """
        创建Pipeline Stage子模型
        """
        class PipelineStage(nn.Module):
            def __init__(self, layers, stage_id):
                super().__init__()
                self.stage_id = stage_id
                self.layers = nn.ModuleDict()
                
                # 添加层到stage
                for name, module in layers:
                    self.layers[name] = module
            
            def forward(self, hidden_states):
                # 顺序执行所有层
                for layer in self.layers.values():
                    hidden_states = layer(hidden_states)
                
                return hidden_states
        
        return PipelineStage(stage_layers, stage_id)
    
    def insert_pipeline_communication(self, stages, pp_size):
        """
        为Pipeline Stage插入通信
        """
        for stage_id in range(pp_size):
            stage = stages[stage_id]
            
            # 包装forward函数添加通信
            original_forward = stage.forward
            
            def forward_with_communication(hidden_states, stage_id=stage_id):
                # 1. 接收上游数据(除了第一个stage)
                if stage_id > 0:
                    hidden_states = self._receive_from_prev_stage(hidden_states, stage_id)
                
                # 2. 执行本stage计算
                output = original_forward(hidden_states)
                
                # 3. 发送到下游(除了最后一个stage)
                if stage_id < pp_size - 1:
                    self._send_to_next_stage(output, stage_id)
                
                return output
            
            stage.forward = forward_with_communication
    
    def _receive_from_prev_stage(self, tensor, stage_id):
        """从上一个stage接收数据"""
        import torch.distributed as dist
        
        prev_rank = stage_id - 1
        dist.recv(tensor, src=prev_rank)
        return tensor
    
    def _send_to_next_stage(self, tensor, stage_id):
        """发送数据到下一个stage"""
        import torch.distributed as dist
        
        next_rank = stage_id + 1
        dist.send(tensor, dst=next_rank)

3.3 混合并行策略优化

3.3.1 策略组合

class HybridParallelOptimizer:
    """
    混合并行策略优化器
    """
    def optimize_hybrid_strategy(self, model, world_size, memory_limit):
        """
        优化混合并行策略
        """
        best_strategy = None
        best_score = float('inf')
        
        # 1. 枚举所有可能的组合
        for tp_size in self._get_valid_tp_sizes(world_size):
            for pp_size in self._get_valid_pp_sizes(world_size, tp_size):
                dp_size = world_size // (tp_size * pp_size)
                
                if dp_size < 1:
                    continue
                
                # 2. 评估当前组合
                strategy = HybridStrategy(
                    tp_size=tp_size,
                    pp_size=pp_size,
                    dp_size=dp_size,
                )
                
                # 3. 检查内存约束
                if not self._check_memory_constraint(model, strategy, memory_limit):
                    continue
                
                # 4. 估计性能
                score = self._evaluate_strategy_performance(model, strategy)
                
                # 5. 更新最优策略
                if score < best_score:
                    best_score = score
                    best_strategy = strategy
        
        return best_strategy
    
    def _evaluate_strategy_performance(self, model, strategy):
        """
        评估混合策略性能
        """
        # 1. 计算开销
        compute_cost = self._estimate_compute_cost(model, strategy)
        
        # 2. 通信开销
        comm_cost = self._estimate_communication_cost(model, strategy)
        
        # 3. 内存开销
        memory_cost = self._estimate_memory_cost(model, strategy)
        
        # 4. Pipeline bubble开销
        bubble_cost = self._estimate_pipeline_bubble(strategy)
        
        # 5. 综合评分(可以根据需求调整权重)
        total_score = (
            compute_cost * 0.4 +
            comm_cost * 0.3 +
            memory_cost * 0.2 +
            bubble_cost * 0.1
        )
        
        return total_score
    
    def _estimate_pipeline_bubble(self, strategy):
        """
        估计Pipeline bubble开销
        """
        if strategy.pp_size == 1:
            return 0.0
        
        # Pipeline bubble比例近似为 (pp_size - 1) / (pp_size + microbatch_num - 1)
        # 假设microbatch数量等于pp_size
        microbatch_num = strategy.pp_size
        bubble_ratio = (strategy.pp_size - 1) / (strategy.pp_size + microbatch_num - 1)
        
        return bubble_ratio

四、数据结构UML图

4.1 AutoParallel核心类图

classDiagram
    class AutoParallelConfig {
        +world_size: int
        +max_tp_size: int
        +max_pp_size: int
        +optimization_target: str
        +search_algorithm: str
        +enable_tensor_parallel: bool
        +enable_pipeline_parallel: bool
    }
    
    class ModelAnalyzer {
        +model: PretrainedModel
        +sample_input: dict
        +build_computation_graph() ComputationGraph
        +analyze_memory_usage() MemoryProfile
        -_estimate_flops(module) int
        -_estimate_memory(module) int
    }
    
    class StrategySearcher {
        <<abstract>>
        +config: AutoParallelConfig
        +cluster_info: ClusterInfo
        +search(graph, profile) ParallelStrategy
        #_generate_candidates() List[Strategy]
        #_estimate_cost(strategy) float
    }
    
    class GreedyStrategySearcher {
        +search(graph, profile) ParallelStrategy
        -_generate_layer_candidates(layer) List[LayerStrategy]
        -_check_constraints(candidate, strategy) bool
    }
    
    class DPStrategySearcher {
        +search(graph, profile) ParallelStrategy
        -_candidate_to_state(candidate) State
        -_estimate_transition_cost(prev, curr) float
        -_backtrack_optimal_path(dp, layers) ParallelStrategy
    }
    
    class CostEstimator {
        +cluster_info: ClusterInfo
        +estimate_cost(strategy, graph, profile) Cost
        +compute_estimator: ComputationCostEstimator
        +comm_estimator: CommunicationCostEstimator
    }
    
    class ComputationCostEstimator {
        +gpu_peak_flops: Dict[str, int]
        +estimate_layer_compute_time(layer, strategy) float
        +estimate_attention_cost(layer, strategy, seq_len) float
    }
    
    class CommunicationCostEstimator {
        +estimate_allreduce_cost(data_size, num_gpus) float
        +estimate_allgather_cost(data_size, num_gpus) float
        +estimate_point_to_point_cost(data_size) float
        +estimate_tensor_parallel_comm_cost(layer, tp_size) float
    }
    
    class ParallelStrategy {
        +tp_size: int
        +pp_size: int
        +dp_size: int
        +layer_strategies: Dict[str, LayerStrategy]
        +add_layer_strategy(name, strategy)
        +get_mapping() Mapping
    }
    
    class ModelTransformer {
        +strategy: ParallelStrategy
        +transform(model) PretrainedModel
        +tensor_parallel_slicer: TensorParallelSlicer
        +pipeline_stage_divider: PipelineStageDivider
    }
    
    StrategySearcher <|-- GreedyStrategySearcher
    StrategySearcher <|-- DPStrategySearcher
    ModelAnalyzer --> ComputationGraph : builds
    ModelAnalyzer --> MemoryProfile : analyzes
    CostEstimator --> ComputationCostEstimator : uses
    CostEstimator --> CommunicationCostEstimator : uses
    StrategySearcher --> CostEstimator : uses
    ModelTransformer --> ParallelStrategy : applies

4.2 策略搜索流程状态图

stateDiagram-v2
    [*] --> 模型分析: auto_parallel()
    模型分析 --> 图构建: ModelAnalyzer
    图构建 --> 内存分析: build_computation_graph()
    内存分析 --> 策略搜索: analyze_memory_usage()
    
    策略搜索 --> 贪心搜索: algorithm="greedy"
    策略搜索 --> 动态规划: algorithm="dynamic_programming"
    策略搜索 --> 遗传算法: algorithm="genetic"
    
    贪心搜索 --> 候选生成: 为每层生成候选
    候选生成 --> 约束检查: 检查硬件约束
    约束检查 --> 开销估计: 估计计算+通信
    开销估计 --> 局部最优: 选择最优候选
    局部最优 --> 候选生成: 下一层
    局部最优 --> 策略评估: 所有层完成
    
    动态规划 --> 状态定义: 定义DP状态
    状态定义 --> 状态转移: 计算转移开销
    状态转移 --> 最优路径: 回溯最优解
    最优路径 --> 策略评估
    
    遗传算法 --> 种群初始化: 随机生成策略
    种群初始化 --> 适应度评估: 评估每个策略
    适应度评估 --> 选择交叉: 选择优秀个体
    选择交叉 --> 变异操作: 产生新个体
    变异操作 --> 适应度评估: 迭代进化
    适应度评估 --> 策略评估: 收敛
    
    策略评估 --> 模型变换: 选择最优策略
    模型变换 --> TP切分: Tensor Parallel
    模型变换 --> PP切分: Pipeline Parallel
    TP切分 --> 通信插入: 插入AllReduce
    PP切分 --> 通信插入: 插入P2P
    通信插入 --> [*]: 返回并行模型

五、使用示例

5.1 基础自动并行

from tensorrt_llm.auto_parallel import auto_parallel, AutoParallelConfig
from tensorrt_llm.models import LlamaForCausalLM

# 1. 加载模型
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-3-8B")

# 2. 配置自动并行
config = AutoParallelConfig(
    world_size=8,                          # 8个GPU
    optimization_target="latency",         # 优化延迟
    search_algorithm="greedy",             # 贪心搜索
    max_search_time=300,                   # 最大搜索5分钟
)

# 3. 自动并行化
parallel_model, mapping = auto_parallel(model, config)

# 4. 构建引擎
from tensorrt_llm import build, BuildConfig

build_config = BuildConfig(
    max_batch_size=16,
    max_input_len=2048,
    max_seq_len=4096,
)

# 设置映射
parallel_model.config.mapping = mapping

# 构建
engine = build(parallel_model, build_config)

# 结果示例:
# mapping.tp_size = 8, mapping.pp_size = 1
# 推荐策略:纯Tensor Parallel(适合推理)

5.2 内存受限场景

# 超大模型在有限显存上部署
config = AutoParallelConfig(
    world_size=16,
    optimization_target="memory",          # 优化内存使用
    memory_limit_per_gpu=40,              # 每GPU 40GB限制
    enable_pipeline_parallel=True,        # 启用PP减少内存
    search_algorithm="dynamic_programming", # 全局最优
)

# 准备样本输入(帮助内存分析)
sample_input = {
    "input_ids": torch.randint(0, 32000, (1, 2048)),
    "attention_mask": torch.ones(1, 2048),
}

parallel_model, mapping = auto_parallel(
    model, 
    config, 
    sample_input=sample_input
)

# 结果示例:
# mapping.tp_size = 4, mapping.pp_size = 4
# 混合策略:减少内存占用

5.3 自定义优化目标

class CustomOptimizationTarget:
    """
    自定义优化目标:平衡延迟和吞吐量
    """
    def __init__(self, latency_weight=0.6, throughput_weight=0.4):
        self.latency_weight = latency_weight
        self.throughput_weight = throughput_weight
    
    def evaluate(self, strategy, model_info):
        # 1. 估计延迟
        latency = self._estimate_latency(strategy, model_info)
        
        # 2. 估计吞吐量
        throughput = self._estimate_throughput(strategy, model_info)
        
        # 3. 综合评分(越小越好)
        score = (
            self.latency_weight * latency +
            self.throughput_weight * (1.0 / throughput)
        )
        
        return score

# 使用自定义优化目标
config = AutoParallelConfig(
    world_size=32,
    optimization_target=CustomOptimizationTarget(0.7, 0.3),
    search_algorithm="genetic",            # 遗传算法适合复杂目标
)

5.4 MoE模型自动并行

from tensorrt_llm.models import MixtralForCausalLM

# MoE模型需要Expert Parallel
mixtral_config = AutoParallelConfig(
    world_size=16,
    enable_expert_parallel=True,           # 启用EP
    enable_tensor_parallel=True,
    optimization_target="throughput",
)

# MoE模型
model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")

parallel_model, mapping = auto_parallel(model, mixtral_config)

# 结果示例:
# mapping.tp_size = 2, mapping.pp_size = 1, mapping.ep_size = 8
# 每个expert分配到不同GPU,同时使用TP加速

六、性能优化建议

6.1 搜索算法选择

def select_search_algorithm(model_size, world_size, time_limit):
    """
    根据场景选择搜索算法
    """
    # 1. 小模型或少GPU:贪心搜索
    if model_size < "13B" or world_size <= 8:
        return "greedy"
    
    # 2. 大模型且时间充裕:动态规划
    elif time_limit > 600:  # 10分钟以上
        return "dynamic_programming"
    
    # 3. 超大模型或复杂约束:遗传算法
    else:
        return "genetic"

# 使用建议:
# - 贪心搜索:快速,适合简单场景
# - 动态规划:全局最优,适合中等复杂度
# - 遗传算法:处理复杂约束,适合超大规模

6.2 硬件感知优化

def configure_for_hardware(gpu_type, interconnect):
    """
    根据硬件配置优化策略
    """
    if gpu_type == "H100" and interconnect == "NVSwitch":
        # H100 + NVSwitch:通信带宽高,偏向TP
        return AutoParallelConfig(
            optimization_target="latency",
            max_tp_size=8,                    # 利用高带宽
            enable_sequence_parallel=True,    # H100支持
        )
    
    elif gpu_type == "A100" and interconnect == "InfiniBand":
        # A100 + IB:平衡TP和PP
        return AutoParallelConfig(
            optimization_target="throughput",
            max_tp_size=4,                    # 适度TP
            enable_pipeline_parallel=True,    # 结合PP
        )
    
    elif interconnect == "Ethernet":
        # 低带宽网络:偏向PP,减少通信
        return AutoParallelConfig(
            optimization_target="memory",
            max_tp_size=2,                    # 最小TP
            enable_pipeline_parallel=True,    # 主要使用PP
        )

6.3 动态调整策略

class AdaptiveParallelManager:
    """
    自适应并行管理器
    """
    def __init__(self, model, initial_config):
        self.model = model
        self.current_strategy = None
        self.performance_history = []
    
    def adapt_strategy(self, workload_info):
        """
        根据工作负载动态调整策略
        """
        # 1. 分析当前工作负载
        batch_size = workload_info['batch_size']
        sequence_length = workload_info['sequence_length']
        request_rate = workload_info['request_rate']
        
        # 2. 预测最优策略
        if batch_size > 32:
            # 大批次:优化吞吐量
            target = "throughput"
            prefer_pp = True
        elif sequence_length > 4096:
            # 长序列:使用Context Parallel
            target = "memory"
            enable_cp = True
        else:
            # 标准场景:优化延迟
            target = "latency"
            prefer_tp = True
        
        # 3. 重新搜索策略
        new_config = AutoParallelConfig(
            optimization_target=target,
            # ... 根据工作负载调整其他参数
        )
        
        new_strategy = auto_parallel(self.model, new_config)
        
        # 4. 评估是否需要切换
        if self._should_switch_strategy(new_strategy):
            self._switch_to_new_strategy(new_strategy)
    
    def _should_switch_strategy(self, new_strategy):
        """
        判断是否应该切换策略
        """
        # 考虑切换开销和性能提升
        switch_cost = self._estimate_switch_cost(new_strategy)
        performance_gain = self._estimate_performance_gain(new_strategy)
        
        return performance_gain > switch_cost * 1.2  # 需要20%以上提升

七、常见问题

Q1:AutoParallel搜索时间过长怎么办?

# 限制搜索空间
config = AutoParallelConfig(
    max_tp_size=4,           # 限制TP最大值
    max_pp_size=4,           # 限制PP最大值
    max_search_time=180,     # 限制搜索时间
    search_algorithm="greedy" # 使用快速算法
)

Q2:如何处理不规则GPU配置?

# 非2的幂次GPU数量
config = AutoParallelConfig(
    world_size=12,  # 12个GPU
    # 自动寻找合适的因数分解:
    # 可能结果:tp=3, pp=4 或 tp=4, pp=3
)

Q3:如何验证自动并行策略的正确性?

def validate_parallel_strategy(original_model, parallel_model, test_input):
    """
    验证并行策略正确性
    """
    # 1. 数值精度检查
    with torch.no_grad():
        original_output = original_model(**test_input)
        parallel_output = parallel_model(**test_input)
    
    # 2. 比较输出
    max_diff = torch.max(torch.abs(original_output.logits - parallel_output.logits))
    print(f"Max difference: {max_diff.item()}")
    
    # 3. 相对误差
    relative_error = max_diff / torch.max(torch.abs(original_output.logits))
    print(f"Relative error: {relative_error.item()}")
    
    # 可接受的误差范围:通常<1e-3
    assert relative_error < 1e-3, "Parallel model output differs too much"

Q4:AutoParallel如何处理异构GPU?

# 异构集群配置
cluster_info = ClusterInfo(
    gpus=[
        {"type": "A100", "memory": 80, "compute_capability": 8.0},
        {"type": "A100", "memory": 80, "compute_capability": 8.0},
        {"type": "V100", "memory": 32, "compute_capability": 7.0},
        {"type": "V100", "memory": 32, "compute_capability": 7.0},
    ],
    interconnect="InfiniBand"
)

# AutoParallel会考虑硬件差异分配任务
config = AutoParallelConfig(
    world_size=4,
    optimization_target="throughput",
    heterogeneous_aware=True,  # 启用异构感知
)

Q5:如何调试并行策略?

# 启用详细日志
import logging
logging.getLogger("tensorrt_llm.auto_parallel").setLevel(logging.DEBUG)

# 可视化策略
def visualize_strategy(strategy):
    """
    可视化并行策略
    """
    print(f"Parallel Strategy:")
    print(f"  TP Size: {strategy.tp_size}")
    print(f"  PP Size: {strategy.pp_size}")
    print(f"  DP Size: {strategy.dp_size}")
    
    print(f"Layer Distribution:")
    for layer_name, layer_strategy in strategy.layer_strategies.items():
        print(f"  {layer_name}: {layer_strategy}")

# 性能分析
def profile_parallel_model(parallel_model, test_input):
    """
    性能分析并行模型
    """
    with torch.profiler.profile(
        activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
        record_shapes=True
    ) as prof:
        parallel_model(**test_input)
    
    # 查看通信开销
    comm_events = [event for event in prof.events() if "nccl" in event.name.lower()]
    total_comm_time = sum(event.cuda_time_total for event in comm_events)
    print(f"Total communication time: {total_comm_time / 1000:.2f} ms")