概述
LangChain Partner包是LangChain生态系统的重要组成部分,通过标准化的集成接口,将各种第三方服务和模型无缝集成到LangChain框架中。Partner包的设计理念、实现模式和扩展机制。
1. Partner包生态架构
1.1 生态系统概览
graph TB
subgraph "LangChain 生态系统"
subgraph "核心框架"
LC[langchain-core]
LM[langchain]
end
subgraph "LLM Provider包"
LO[langchain-openai<br/>OpenAI集成]
LA[langchain-anthropic<br/>Anthropic集成]
LG[langchain-groq<br/>Groq集成]
LMI[langchain-mistralai<br/>Mistral集成]
LH[langchain-huggingface<br/>HuggingFace集成]
LX[langchain-xai<br/>xAI集成]
end
subgraph "向量存储包"
LCH[langchain-chroma<br/>Chroma集成]
LQ[langchain-qdrant<br/>Qdrant集成]
LP[langchain-pinecone<br/>Pinecone集成]
LAS[langchain-astradb<br/>AstraDB集成]
end
subgraph "工具服务包"
LE[langchain-exa<br/>Exa搜索]
LN[langchain-nomic<br/>Nomic集成]
LPR[langchain-prompty<br/>Prompty集成]
end
subgraph "社区包"
LCOM[langchain-community<br/>社区维护集成]
LEXP[langchain-experimental<br/>实验性功能]
end
end
LC --> LO
LC --> LA
LC --> LG
LC --> LMI
LC --> LH
LC --> LX
LC --> LCH
LC --> LQ
LC --> LP
LC --> LAS
LC --> LE
LC --> LN
LC --> LPR
LM --> LCOM
LM --> LEXP
style LC fill:#ffeb3b
style LO fill:#4caf50
style LA fill:#2196f3
style LCH fill:#9c27b0
1.2 Partner包设计原则
# Partner包的核心设计原则
class PartnerPackageDesignPrinciples:
"""Partner包设计原则。
1. 标准化接口:所有Partner包都实现相同的抽象接口
2. 独立版本:每个包有独立的版本控制和发布周期
3. 轻量依赖:最小化依赖,避免版本冲突
4. 向后兼容:保持API的向后兼容性
5. 文档完整:提供完整的文档和示例
"""
@staticmethod
def standard_interface_example():
"""标准化接口示例。"""
from langchain_core.language_models import BaseChatModel
# 所有聊天模型都继承自BaseChatModel
class PartnerChatModel(BaseChatModel):
def _generate(self, messages, stop=None, run_manager=None, **kwargs):
# 实现具体的生成逻辑
pass
def _llm_type(self):
return "partner_model"
@staticmethod
def independent_versioning_example():
"""独立版本控制示例。"""
# pyproject.toml
"""
[project]
name = "langchain-partner"
version = "0.1.0"
dependencies = [
"langchain-core>=0.1.0,<0.2.0",
"partner-sdk>=1.0.0",
]
"""
@staticmethod
def lightweight_dependencies():
"""轻量依赖原则。"""
# 只依赖必要的包
required_deps = [
"langchain-core", # 核心抽象
"partner-sdk", # 第三方SDK
]
optional_deps = [
"numpy", # 可选的数值计算
"pandas", # 可选的数据处理
]
2. OpenAI集成包深度解析
2.1 langchain-openai包结构
# langchain_openai/__init__.py
"""OpenAI集成包的主要入口。
提供OpenAI模型的LangChain集成,包括:
- ChatOpenAI: OpenAI聊天模型
- OpenAI: OpenAI完成模型
- OpenAIEmbeddings: OpenAI嵌入模型
- AzureChatOpenAI: Azure OpenAI聊天模型
- AzureOpenAI: Azure OpenAI完成模型
- AzureOpenAIEmbeddings: Azure OpenAI嵌入模型
"""
from langchain_openai.chat_models import ChatOpenAI, AzureChatOpenAI
from langchain_openai.llms import OpenAI, AzureOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings, AzureOpenAIEmbeddings
__all__ = [
"ChatOpenAI",
"AzureChatOpenAI",
"OpenAI",
"AzureOpenAI",
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
]
2.2 ChatOpenAI实现分析
from typing import Any, Dict, List, Optional, Union, Iterator, AsyncIterator
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import BaseMessage, AIMessage, HumanMessage, SystemMessage
from langchain_core.outputs import ChatGeneration, ChatResult, ChatGenerationChunk
from langchain_core.callbacks import CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun
import openai
class ChatOpenAI(BaseChatModel):
"""OpenAI聊天模型的LangChain包装器。
这个类将OpenAI的聊天完成API包装成LangChain的BaseChatModel接口,
提供统一的调用方式和完整的功能支持。
主要特性:
1. 完整的OpenAI API支持:支持所有OpenAI聊天模型
2. 流式处理:支持实时流式响应
3. 函数调用:支持OpenAI的函数调用功能
4. 异步支持:原生异步实现
5. 错误处理:完善的错误处理和重试机制
"""
# === 核心配置 ===
client: Any = Field(default=None, exclude=True)
"""OpenAI客户端实例。"""
async_client: Any = Field(default=None, exclude=True)
"""异步OpenAI客户端实例。"""
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""要使用的模型名称。"""
temperature: float = 0.7
"""采样温度,控制输出的随机性。"""
max_tokens: Optional[int] = None
"""生成的最大token数。"""
top_p: float = 1
"""核采样参数。"""
frequency_penalty: float = 0
"""频率惩罚参数。"""
presence_penalty: float = 0
"""存在惩罚参数。"""
n: int = 1
"""为每个输入生成的完成数。"""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""请求超时时间。"""
max_retries: int = 2
"""最大重试次数。"""
streaming: bool = False
"""是否使用流式处理。"""
# === OpenAI特定配置 ===
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
"""OpenAI API密钥。"""
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
"""OpenAI API基础URL。"""
openai_organization: Optional[str] = Field(default=None, alias="organization")
"""OpenAI组织ID。"""
openai_proxy: Optional[str] = None
"""代理设置。"""
tiktoken_model_name: Optional[str] = None
"""用于token计数的模型名称。"""
# === 函数调用支持 ===
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""传递给模型的额外参数。"""
def __init__(self, **kwargs: Any):
"""初始化ChatOpenAI。
Args:
**kwargs: 配置参数。
"""
super().__init__(**kwargs)
# 初始化OpenAI客户端
self._init_clients()
def _init_clients(self) -> None:
"""初始化OpenAI客户端。"""
client_params = {
"api_key": self.openai_api_key,
"base_url": self.openai_api_base,
"organization": self.openai_organization,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
}
# 移除None值
client_params = {k: v for k, v in client_params.items() if v is not None}
# 创建同步客户端
self.client = openai.OpenAI(**client_params)
# 创建异步客户端
self.async_client = openai.AsyncOpenAI(**client_params)
@property
def _llm_type(self) -> str:
"""返回LLM类型。"""
return "openai-chat"
@property
def _identifying_params(self) -> Dict[str, Any]:
"""获取标识参数。"""
return {
"model_name": self.model_name,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
}
def _convert_messages_to_openai_format(
self, messages: List[BaseMessage]
) -> List[Dict[str, Any]]:
"""将LangChain消息转换为OpenAI格式。
Args:
messages: LangChain消息列表。
Returns:
OpenAI格式的消息列表。
"""
openai_messages = []
for message in messages:
if isinstance(message, HumanMessage):
role = "user"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, SystemMessage):
role = "system"
else:
raise ValueError(f"不支持的消息类型: {type(message)}")
openai_message = {"role": role, "content": message.content}
# 处理函数调用
if hasattr(message, "additional_kwargs") and message.additional_kwargs:
openai_message.update(message.additional_kwargs)
openai_messages.append(openai_message)
return openai_messages
def _create_chat_result(self, response: Any) -> ChatResult:
"""从OpenAI响应创建ChatResult。
Args:
response: OpenAI API响应。
Returns:
LangChain ChatResult。
"""
generations = []
for choice in response.choices:
message = choice.message
# 创建AIMessage
ai_message = AIMessage(
content=message.content or "",
additional_kwargs={
k: v for k, v in message.dict().items()
if k not in ("content", "role")
},
)
# 创建ChatGeneration
generation = ChatGeneration(
message=ai_message,
generation_info={
"finish_reason": choice.finish_reason,
"logprobs": getattr(choice, "logprobs", None),
},
)
generations.append(generation)
# 创建LLM输出信息
llm_output = {
"token_usage": response.usage.dict() if response.usage else {},
"model_name": response.model,
"system_fingerprint": getattr(response, "system_fingerprint", None),
}
return ChatResult(generations=generations, llm_output=llm_output)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""生成聊天响应。
Args:
messages: 输入消息列表。
stop: 停止序列。
run_manager: 回调管理器。
**kwargs: 额外参数。
Returns:
聊天结果。
"""
# 准备请求参数
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": False,
}
# 添加停止序列
if stop:
params["stop"] = stop
# 添加额外参数
params.update(self.model_kwargs)
params.update(kwargs)
# 调用OpenAI API
try:
response = self.client.chat.completions.create(**params)
return self._create_chat_result(response)
except Exception as e:
if run_manager:
run_manager.on_llm_error(e)
raise e
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""异步生成聊天响应。"""
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": False,
}
if stop:
params["stop"] = stop
params.update(self.model_kwargs)
params.update(kwargs)
try:
response = await self.async_client.chat.completions.create(**params)
return self._create_chat_result(response)
except Exception as e:
if run_manager:
await run_manager.on_llm_error(e)
raise e
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""流式生成聊天响应。
Args:
messages: 输入消息列表。
stop: 停止序列。
run_manager: 回调管理器。
**kwargs: 额外参数。
Yields:
聊天生成块。
"""
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": True,
}
if stop:
params["stop"] = stop
params.update(self.model_kwargs)
params.update(kwargs)
try:
stream = self.client.chat.completions.create(**params)
for chunk in stream:
if not chunk.choices:
continue
choice = chunk.choices[0]
delta = choice.delta
# 创建消息块
message_chunk = AIMessage(
content=delta.content or "",
additional_kwargs={
k: v for k, v in delta.dict().items()
if k not in ("content", "role")
},
)
# 创建生成块
generation_chunk = ChatGenerationChunk(
message=message_chunk,
generation_info={
"finish_reason": choice.finish_reason,
},
)
# 触发回调
if run_manager:
run_manager.on_llm_new_token(
delta.content or "",
chunk=generation_chunk,
)
yield generation_chunk
except Exception as e:
if run_manager:
run_manager.on_llm_error(e)
raise e
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
"""异步流式生成聊天响应。"""
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": True,
}
if stop:
params["stop"] = stop
params.update(self.model_kwargs)
params.update(kwargs)
try:
stream = await self.async_client.chat.completions.create(**params)
async for chunk in stream:
if not chunk.choices:
continue
choice = chunk.choices[0]
delta = choice.delta
message_chunk = AIMessage(
content=delta.content or "",
additional_kwargs={
k: v for k, v in delta.dict().items()
if k not in ("content", "role")
},
)
generation_chunk = ChatGenerationChunk(
message=message_chunk,
generation_info={
"finish_reason": choice.finish_reason,
},
)
if run_manager:
await run_manager.on_llm_new_token(
delta.content or "",
chunk=generation_chunk,
)
yield generation_chunk
except Exception as e:
if run_manager:
await run_manager.on_llm_error(e)
raise e
# === 函数调用支持 ===
def bind_functions(
self,
functions: List[Dict[str, Any]],
*,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
**kwargs: Any,
) -> "ChatOpenAI":
"""绑定函数到模型。
Args:
functions: 函数定义列表。
function_call: 函数调用配置。
**kwargs: 额外参数。
Returns:
绑定了函数的新模型实例。
"""
extra_kwargs = {
"functions": functions,
**kwargs,
}
if function_call is not None:
extra_kwargs["function_call"] = function_call
return self.bind(**extra_kwargs)
def bind_tools(
self,
tools: List[Union[Dict[str, Any], type, Callable, BaseTool]],
**kwargs: Any,
) -> "ChatOpenAI":
"""绑定工具到模型。
Args:
tools: 工具列表。
**kwargs: 额外参数。
Returns:
绑定了工具的新模型实例。
"""
# 转换工具为OpenAI函数格式
functions = []
for tool in tools:
if isinstance(tool, dict):
functions.append(tool)
elif isinstance(tool, type) and issubclass(tool, BaseModel):
functions.append(convert_pydantic_to_openai_function(tool))
elif callable(tool):
functions.append(convert_to_openai_function(tool))
elif isinstance(tool, BaseTool):
functions.append(format_tool_to_openai_function(tool))
else:
raise ValueError(f"不支持的工具类型: {type(tool)}")
return self.bind_functions(functions, **kwargs)
# === Token计算 ===
def get_num_tokens(self, text: str) -> int:
"""计算文本的token数量。
Args:
text: 输入文本。
Returns:
token数量。
"""
try:
import tiktoken
except ImportError:
raise ImportError(
"tiktoken包是计算token数量所必需的。"
"请使用 `pip install tiktoken` 安装。"
)
model_name = self.tiktoken_model_name or self.model_name
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
# 如果模型不支持,使用默认编码
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(text))
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""计算消息列表的token数量。
Args:
messages: 消息列表。
Returns:
token数量。
"""
try:
import tiktoken
except ImportError:
raise ImportError(
"tiktoken包是计算token数量所必需的。"
"请使用 `pip install tiktoken` 安装。"
)
model_name = self.tiktoken_model_name or self.model_name
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
# 计算消息的token数量
# 这是OpenAI官方推荐的计算方法
tokens_per_message = 3 # 每条消息的固定开销
tokens_per_name = 1 # 每个名称的开销
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
# 计算内容token
if message.content:
num_tokens += len(encoding.encode(message.content))
# 计算角色token
if isinstance(message, HumanMessage):
num_tokens += len(encoding.encode("user"))
elif isinstance(message, AIMessage):
num_tokens += len(encoding.encode("assistant"))
elif isinstance(message, SystemMessage):
num_tokens += len(encoding.encode("system"))
num_tokens += 3 # 每次回复的固定开销
return num_tokens
3. Anthropic集成包分析
3.1 langchain-anthropic包特色
# langchain_anthropic/chat_models.py
from typing import Any, Dict, List, Optional, Union, Iterator, AsyncIterator
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import BaseMessage, AIMessage, HumanMessage, SystemMessage
import anthropic
class ChatAnthropic(BaseChatModel):
"""Anthropic聊天模型的LangChain包装器。
Anthropic的Claude模型具有独特的特性:
1. 长上下文支持:支持100K+的上下文长度
2. 安全性优先:内置安全过滤和对齐机制
3. 推理能力强:在复杂推理任务上表现优异
4. 多模态支持:支持文本和图像输入
与OpenAI的主要区别:
- 消息格式:使用不同的角色和格式约定
- 系统消息:系统消息的处理方式不同
- 流式处理:流式响应的格式和处理方式
- 函数调用:使用工具调用而非函数调用
"""
# === 核心配置 ===
client: Any = Field(default=None, exclude=True)
"""Anthropic客户端实例。"""
async_client: Any = Field(default=None, exclude=True)
"""异步Anthropic客户端实例。"""
model: str = Field(default="claude-3-sonnet-20240229")
"""要使用的Claude模型名称。"""
max_tokens: int = 1024
"""生成的最大token数。注意:Anthropic要求明确指定max_tokens。"""
temperature: Optional[float] = None
"""采样温度。"""
top_p: Optional[float] = None
"""核采样参数。"""
top_k: Optional[int] = None
"""Top-k采样参数。"""
# === Anthropic特定配置 ===
anthropic_api_key: Optional[str] = Field(default=None, alias="api_key")
"""Anthropic API密钥。"""
anthropic_api_url: Optional[str] = Field(default=None, alias="base_url")
"""Anthropic API基础URL。"""
max_retries: int = 2
"""最大重试次数。"""
timeout: Optional[float] = None
"""请求超时时间。"""
def __init__(self, **kwargs: Any):
"""初始化ChatAnthropic。"""
super().__init__(**kwargs)
self._init_clients()
def _init_clients(self) -> None:
"""初始化Anthropic客户端。"""
client_params = {
"api_key": self.anthropic_api_key,
"base_url": self.anthropic_api_url,
"max_retries": self.max_retries,
"timeout": self.timeout,
}
# 移除None值
client_params = {k: v for k, v in client_params.items() if v is not None}
self.client = anthropic.Anthropic(**client_params)
self.async_client = anthropic.AsyncAnthropic(**client_params)
@property
def _llm_type(self) -> str:
"""返回LLM类型。"""
return "anthropic-chat"
def _convert_messages_to_anthropic_format(
self, messages: List[BaseMessage]
) -> Tuple[Optional[str], List[Dict[str, Any]]]:
"""将LangChain消息转换为Anthropic格式。
Anthropic的消息格式特点:
1. 系统消息单独处理,不在messages数组中
2. 消息必须交替出现(user/assistant/user/assistant...)
3. 第一条消息必须是user消息
Args:
messages: LangChain消息列表。
Returns:
(系统消息, Anthropic格式的消息列表) 元组。
"""
system_message = None
anthropic_messages = []
for message in messages:
if isinstance(message, SystemMessage):
# 系统消息单独处理
if system_message is None:
system_message = message.content
else:
# 如果有多个系统消息,合并它们
system_message += "\n\n" + message.content
elif isinstance(message, HumanMessage):
anthropic_messages.append({
"role": "user",
"content": self._format_message_content(message),
})
elif isinstance(message, AIMessage):
anthropic_messages.append({
"role": "assistant",
"content": self._format_message_content(message),
})
else:
raise ValueError(f"不支持的消息类型: {type(message)}")
# 确保消息格式正确
anthropic_messages = self._ensure_alternating_roles(anthropic_messages)
return system_message, anthropic_messages
def _format_message_content(self, message: BaseMessage) -> Union[str, List[Dict[str, Any]]]:
"""格式化消息内容,支持多模态。
Args:
message: 输入消息。
Returns:
格式化的内容。
"""
if isinstance(message.content, str):
return message.content
elif isinstance(message.content, list):
# 多模态内容
formatted_content = []
for item in message.content:
if isinstance(item, dict):
if item.get("type") == "text":
formatted_content.append({
"type": "text",
"text": item["text"],
})
elif item.get("type") == "image":
formatted_content.append({
"type": "image",
"source": {
"type": "base64",
"media_type": item.get("media_type", "image/jpeg"),
"data": item["data"],
},
})
else:
# 纯文本项
formatted_content.append({
"type": "text",
"text": str(item),
})
return formatted_content
else:
return str(message.content)
def _ensure_alternating_roles(
self, messages: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""确保消息角色交替出现。
Anthropic要求消息必须在user和assistant之间交替。
Args:
messages: 原始消息列表。
Returns:
处理后的消息列表。
"""
if not messages:
return messages
processed_messages = []
last_role = None
for message in messages:
current_role = message["role"]
if current_role == last_role:
# 角色重复,需要合并或插入分隔符
if current_role == "user":
# 合并用户消息
if processed_messages:
last_message = processed_messages[-1]
if isinstance(last_message["content"], str) and isinstance(message["content"], str):
last_message["content"] += "\n\n" + message["content"]
else:
# 复杂内容,添加新消息
processed_messages.append(message)
else:
processed_messages.append(message)
else:
# assistant角色重复,插入空的user消息
processed_messages.append({
"role": "user",
"content": "继续",
})
processed_messages.append(message)
else:
processed_messages.append(message)
last_role = current_role
# 确保第一条消息是user消息
if processed_messages and processed_messages[0]["role"] != "user":
processed_messages.insert(0, {
"role": "user",
"content": "你好",
})
return processed_messages
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""生成聊天响应。"""
system_message, anthropic_messages = self._convert_messages_to_anthropic_format(messages)
# 准备请求参数
params = {
"model": self.model,
"messages": anthropic_messages,
"max_tokens": self.max_tokens,
}
# 添加可选参数
if system_message:
params["system"] = system_message
if self.temperature is not None:
params["temperature"] = self.temperature
if self.top_p is not None:
params["top_p"] = self.top_p
if self.top_k is not None:
params["top_k"] = self.top_k
if stop:
params["stop_sequences"] = stop
# 添加额外参数
params.update(kwargs)
try:
response = self.client.messages.create(**params)
return self._create_chat_result(response)
except Exception as e:
if run_manager:
run_manager.on_llm_error(e)
raise e
def _create_chat_result(self, response: Any) -> ChatResult:
"""从Anthropic响应创建ChatResult。
Args:
response: Anthropic API响应。
Returns:
LangChain ChatResult。
"""
# 提取内容
content = ""
if response.content:
for content_block in response.content:
if content_block.type == "text":
content += content_block.text
# 创建AIMessage
ai_message = AIMessage(
content=content,
additional_kwargs={
"id": response.id,
"model": response.model,
"stop_reason": response.stop_reason,
"stop_sequence": response.stop_sequence,
},
)
# 创建ChatGeneration
generation = ChatGeneration(
message=ai_message,
generation_info={
"finish_reason": response.stop_reason,
"model": response.model,
},
)
# 创建LLM输出信息
llm_output = {
"token_usage": {
"input_tokens": response.usage.input_tokens,
"output_tokens": response.usage.output_tokens,
},
"model_name": response.model,
}
return ChatResult(generations=[generation], llm_output=llm_output)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""流式生成聊天响应。"""
system_message, anthropic_messages = self._convert_messages_to_anthropic_format(messages)
params = {
"model": self.model,
"messages": anthropic_messages,
"max_tokens": self.max_tokens,
"stream": True,
}
if system_message:
params["system"] = system_message
if self.temperature is not None:
params["temperature"] = self.temperature
if self.top_p is not None:
params["top_p"] = self.top_p
if self.top_k is not None:
params["top_k"] = self.top_k
if stop:
params["stop_sequences"] = stop
params.update(kwargs)
try:
stream = self.client.messages.create(**params)
for event in stream:
if event.type == "content_block_delta":
# 文本内容增量
if hasattr(event.delta, 'text'):
content = event.delta.text
message_chunk = AIMessage(content=content)
generation_chunk = ChatGenerationChunk(
message=message_chunk,
generation_info={"delta_type": "content_block_delta"},
)
if run_manager:
run_manager.on_llm_new_token(content, chunk=generation_chunk)
yield generation_chunk
elif event.type == "message_stop":
# 消息结束
message_chunk = AIMessage(content="")
generation_chunk = ChatGenerationChunk(
message=message_chunk,
generation_info={
"finish_reason": "stop",
"delta_type": "message_stop",
},
)
yield generation_chunk
except Exception as e:
if run_manager:
run_manager.on_llm_error(e)
raise e
# === 工具调用支持 ===
def bind_tools(
self,
tools: List[Union[Dict[str, Any], type, Callable, BaseTool]],
**kwargs: Any,
) -> "ChatAnthropic":
"""绑定工具到模型。
Anthropic使用工具调用而非函数调用。
Args:
tools: 工具列表。
**kwargs: 额外参数。
Returns:
绑定了工具的新模型实例。
"""
# 转换工具为Anthropic工具格式
anthropic_tools = []
for tool in tools:
if isinstance(tool, dict):
anthropic_tools.append(tool)
elif isinstance(tool, type) and issubclass(tool, BaseModel):
anthropic_tools.append(convert_pydantic_to_anthropic_tool(tool))
elif callable(tool):
anthropic_tools.append(convert_to_anthropic_tool(tool))
elif isinstance(tool, BaseTool):
anthropic_tools.append(format_tool_to_anthropic_tool(tool))
else:
raise ValueError(f"不支持的工具类型: {type(tool)}")
return self.bind(tools=anthropic_tools, **kwargs)
4. 向量存储集成包
4.1 Chroma集成包分析
# langchain_chroma/vectorstores.py
from typing import Any, Dict, List, Optional, Union, Tuple
from langchain_core.vectorstores import VectorStore
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
import chromadb
class Chroma(VectorStore):
"""Chroma向量数据库的LangChain集成。
Chroma是一个开源的向量数据库,专为AI应用设计:
1. 简单易用:最小化配置,开箱即用
2. 高性能:优化的向量搜索和存储
3. 可扩展:支持从原型到生产的扩展
4. 多模态:支持文本、图像等多种数据类型
主要特性:
- 内存和持久化存储
- 多种距离度量(余弦、欧几里得、内积)
- 元数据过滤
- 集合管理
- 批量操作
"""
def __init__(
self,
collection_name: str = "langchain",
embedding_function: Optional[Embeddings] = None,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
collection_metadata: Optional[Dict] = None,
client: Optional[chromadb.Client] = None,
relevance_score_fn: Optional[Callable[[float], float]] = None,
):
"""初始化Chroma向量存储。
Args:
collection_name: 集合名称。
embedding_function: 嵌入函数。
persist_directory: 持久化目录。
client_settings: 客户端设置。
collection_metadata: 集合元数据。
client: Chroma客户端实例。
relevance_score_fn: 相关性分数函数。
"""
try:
import chromadb
import chromadb.config
except ImportError:
raise ImportError(
"无法导入chromadb,请使用 `pip install chromadb` 安装。"
)
if client is not None:
self._client = client
else:
if client_settings:
self._client = chromadb.Client(client_settings)
elif persist_directory:
self._client = chromadb.PersistentClient(path=persist_directory)
else:
self._client = chromadb.Client()
self._collection_name = collection_name
self._embedding_function = embedding_function
self._collection_metadata = collection_metadata
self._relevance_score_fn = relevance_score_fn
# 获取或创建集合
self._collection = self._get_or_create_collection()
def _get_or_create_collection(self) -> chromadb.Collection:
"""获取或创建Chroma集合。
Returns:
Chroma集合实例。
"""
try:
# 尝试获取现有集合
collection = self._client.get_collection(
name=self._collection_name,
embedding_function=self._get_chroma_embedding_function(),
)
except ValueError:
# 集合不存在,创建新集合
collection = self._client.create_collection(
name=self._collection_name,
embedding_function=self._get_chroma_embedding_function(),
metadata=self._collection_metadata,
)
return collection
def _get_chroma_embedding_function(self) -> Optional[Any]:
"""获取Chroma嵌入函数。
Returns:
Chroma嵌入函数或None。
"""
if self._embedding_function is None:
return None
# 包装LangChain嵌入函数为Chroma格式
class ChromaEmbeddingFunction:
def __init__(self, langchain_embedding: Embeddings):
self.langchain_embedding = langchain_embedding
def __call__(self, input: List[str]) -> List[List[float]]:
return self.langchain_embedding.embed_documents(input)
return ChromaEmbeddingFunction(self._embedding_function)
def add_texts(
self,
texts: List[str],
metadatas: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""向向量存储添加文本。
Args:
texts: 要添加的文本列表。
metadatas: 可选的元数据列表。
ids: 可选的ID列表。
**kwargs: 额外参数。
Returns:
添加的文档ID列表。
"""
# 生成ID(如果未提供)
if ids is None:
import uuid
ids = [str(uuid.uuid4()) for _ in texts]
# 准备嵌入
embeddings = None
if self._embedding_function:
embeddings = self._embedding_function.embed_documents(texts)
# 添加到Chroma
self._collection.add(
documents=texts,
metadatas=metadatas,
ids=ids,
embeddings=embeddings,
)
return ids
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""返回与查询最相似的文档。
Args:
query: 查询字符串。
k: 返回的文档数量。
filter: 元数据过滤器。
**kwargs: 额外参数。
Returns:
最相似的文档列表。
"""
# 生成查询嵌入
if self._embedding_function:
query_embedding = self._embedding_function.embed_query(query)
else:
query_embedding = None
# 执行搜索
results = self._collection.query(
query_texts=[query] if query_embedding is None else None,
query_embeddings=[query_embedding] if query_embedding else None,
n_results=k,
where=filter,
**kwargs,
)
# 转换结果为Document对象
documents = []
for i in range(len(results["documents"][0])):
metadata = results["metadatas"][0][i] if results["metadatas"][0] else {}
doc = Document(
page_content=results["documents"][0][i],
metadata=metadata,
)
documents.append(doc)
return documents
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""返回与查询最相似的文档及其相似性分数。
Args:
query: 查询字符串。
k: 返回的文档数量。
filter: 元数据过滤器。
**kwargs: 额外参数。
Returns:
(文档, 相似性分数) 元组列表。
"""
if self._embedding_function:
query_embedding = self._embedding_function.embed_query(query)
else:
query_embedding = None
results = self._collection.query(
query_texts=[query] if query_embedding is None else None,
query_embeddings=[query_embedding] if query_embedding else None,
n_results=k,
where=filter,
include=["documents", "metadatas", "distances"],
**kwargs,
)
documents_with_scores = []
for i in range(len(results["documents"][0])):
metadata = results["metadatas"][0][i] if results["metadatas"][0] else {}
doc = Document(
page_content=results["documents"][0][i],
metadata=metadata,
)
# 转换距离为相似性分数
distance = results["distances"][0][i]
if self._relevance_score_fn:
score = self._relevance_score_fn(distance)
else:
# 默认:距离越小,相似性越高
score = 1.0 - distance
documents_with_scores.append((doc, score))
return documents_with_scores
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""使用最大边际相关性进行搜索。
MMR算法平衡相关性和多样性:
1. 首先检索fetch_k个最相关的文档
2. 然后使用MMR算法选择k个多样化的文档
Args:
query: 查询字符串。
k: 最终返回的文档数量。
fetch_k: 初始检索的文档数量。
lambda_mult: 多样性参数(0=最大多样性,1=最大相关性)。
filter: 元数据过滤器。
**kwargs: 额外参数。
Returns:
多样化的文档列表。
"""
if self._embedding_function is None:
raise ValueError("MMR搜索需要嵌入函数")
# 获取查询嵌入
query_embedding = self._embedding_function.embed_query(query)
# 检索候选文档
results = self._collection.query(
query_embeddings=[query_embedding],
n_results=fetch_k,
where=filter,
include=["documents", "metadatas", "embeddings"],
**kwargs,
)
if not results["documents"][0]:
return []
# 提取嵌入和文档
embeddings = results["embeddings"][0]
documents = results["documents"][0]
metadatas = results["metadatas"][0] or [{}] * len(documents)
# 执行MMR算法
selected_indices = self._mmr_search(
query_embedding,
embeddings,
k=k,
lambda_mult=lambda_mult,
)
# 构建结果文档
selected_documents = []
for idx in selected_indices:
doc = Document(
page_content=documents[idx],
metadata=metadatas[idx],
)
selected_documents.append(doc)
return selected_documents
def _mmr_search(
self,
query_embedding: List[float],
embeddings: List[List[float]],
k: int,
lambda_mult: float,
) -> List[int]:
"""执行最大边际相关性搜索算法。
Args:
query_embedding: 查询嵌入。
embeddings: 候选文档嵌入列表。
k: 要选择的文档数量。
lambda_mult: 多样性参数。
Returns:
选中的文档索引列表。
"""
import numpy as np
# 转换为numpy数组
query_emb = np.array(query_embedding)
doc_embs = np.array(embeddings)
# 计算查询与所有文档的相似性
query_similarities = np.dot(doc_embs, query_emb) / (
np.linalg.norm(doc_embs, axis=1) * np.linalg.norm(query_emb)
)
# MMR算法
selected = []
remaining = list(range(len(embeddings)))
for _ in range(min(k, len(embeddings))):
if not remaining:
break
if not selected:
# 选择第一个最相关的文档
best_idx = remaining[np.argmax(query_similarities[remaining])]
else:
# 计算MMR分数
mmr_scores = []
for idx in remaining:
# 相关性分数
relevance = query_similarities[idx]
# 多样性分数(与已选文档的最大相似性)
max_sim = 0
for selected_idx in selected:
sim = np.dot(doc_embs[idx], doc_embs[selected_idx]) / (
np.linalg.norm(doc_embs[idx]) * np.linalg.norm(doc_embs[selected_idx])
)
max_sim = max(max_sim, sim)
# MMR分数
mmr_score = lambda_mult * relevance - (1 - lambda_mult) * max_sim
mmr_scores.append(mmr_score)
# 选择MMR分数最高的文档
best_idx = remaining[np.argmax(mmr_scores)]
selected.append(best_idx)
remaining.remove(best_idx)
return selected
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
"""删除文档。
Args:
ids: 要删除的文档ID列表。
**kwargs: 额外参数。
Returns:
是否成功删除。
"""
if ids:
self._collection.delete(ids=ids)
return True
return False
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
collection_name: str = "langchain",
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
client: Optional[chromadb.Client] = None,
**kwargs: Any,
) -> "Chroma":
"""从文本列表创建Chroma向量存储。
Args:
texts: 文本列表。
embedding: 嵌入函数。
metadatas: 元数据列表。
ids: ID列表。
collection_name: 集合名称。
persist_directory: 持久化目录。
client_settings: 客户端设置。
client: 客户端实例。
**kwargs: 额外参数。
Returns:
Chroma向量存储实例。
"""
chroma_instance = cls(
collection_name=collection_name,
embedding_function=embedding,
persist_directory=persist_directory,
client_settings=client_settings,
client=client,
**kwargs,
)
chroma_instance.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return chroma_instance
@classmethod
def from_documents(
cls,
documents: List[Document],
embedding: Embeddings,
ids: Optional[List[str]] = None,
collection_name: str = "langchain",
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
client: Optional[chromadb.Client] = None,
**kwargs: Any,
) -> "Chroma":
"""从文档列表创建Chroma向量存储。
Args:
documents: 文档列表。
embedding: 嵌入函数。
ids: ID列表。
collection_name: 集合名称。
persist_directory: 持久化目录。
client_settings: 客户端设置。
client: 客户端实例。
**kwargs: 额外参数。
Returns:
Chroma向量存储实例。
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
persist_directory=persist_directory,
client_settings=client_settings,
client=client,
**kwargs,
)
5. Partner包开发指南
5.1 创建新的Partner包
# 创建新Partner包的标准模板
# pyproject.toml
"""
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
[project]
name = "langchain-newpartner"
version = "0.1.0"
description = "LangChain integration for NewPartner"
authors = ["Your Name <your.email@example.com>"]
license = "MIT"
readme = "README.md"
repository = "https://github.com/langchain-ai/langchain"
keywords = ["langchain", "newpartner", "llm"]
dependencies = [
"langchain-core>=0.1.0,<0.2.0",
"newpartner-sdk>=1.0.0",
]
[project.optional-dependencies]
test = [
"pytest>=7.0.0",
"pytest-asyncio>=0.21.0",
"pytest-mock>=3.10.0",
]
[tool.pytest.ini_options]
testpaths = ["tests"]
asyncio_mode = "auto"
"""
# langchain_newpartner/__init__.py
"""NewPartner集成包。
提供NewPartner服务的LangChain集成。
"""
from langchain_newpartner.chat_models import ChatNewPartner
from langchain_newpartner.llms import NewPartner
from langchain_newpartner.embeddings import NewPartnerEmbeddings
__all__ = [
"ChatNewPartner",
"NewPartner",
"NewPartnerEmbeddings",
]
# langchain_newpartner/chat_models.py
from typing import Any, Dict, List, Optional, Iterator, AsyncIterator
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import BaseMessage, AIMessage
from langchain_core.outputs import ChatGeneration, ChatResult, ChatGenerationChunk
from langchain_core.callbacks import CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun
import newpartner_sdk
class ChatNewPartner(BaseChatModel):
"""NewPartner聊天模型的LangChain包装器。
实现Partner包的标准模式:
1. 继承BaseChatModel
2. 实现必需的抽象方法
3. 提供完整的配置选项
4. 支持同步和异步操作
5. 集成回调系统
"""
# === 核心配置 ===
client: Any = Field(default=None, exclude=True)
"""NewPartner客户端实例。"""
async_client: Any = Field(default=None, exclude=True)
"""异步NewPartner客户端实例。"""
model: str = Field(default="newpartner-default")
"""要使用的模型名称。"""
api_key: Optional[str] = Field(default=None, alias="newpartner_api_key")
"""NewPartner API密钥。"""
base_url: Optional[str] = Field(default=None)
"""API基础URL。"""
temperature: float = 0.7
"""采样温度。"""
max_tokens: Optional[int] = None
"""最大生成token数。"""
def __init__(self, **kwargs: Any):
"""初始化ChatNewPartner。"""
super().__init__(**kwargs)
self._init_clients()
def _init_clients(self) -> None:
"""初始化客户端。"""
client_params = {
"api_key": self.api_key,
"base_url": self.base_url,
}
# 移除None值
client_params = {k: v for k, v in client_params.items() if v is not None}
self.client = newpartner_sdk.Client(**client_params)
self.async_client = newpartner_sdk.AsyncClient(**client_params)
@property
def _llm_type(self) -> str:
"""返回LLM类型。"""
return "newpartner-chat"
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""生成聊天响应。"""
# 转换消息格式
newpartner_messages = self._convert_messages(messages)
# 准备请求参数
params = {
"model": self.model,
"messages": newpartner_messages,
"temperature": self.temperature,
}
if self.max_tokens:
params["max_tokens"] = self.max_tokens
if stop:
params["stop"] = stop
params.update(kwargs)
try:
# 调用API
response = self.client.chat.completions.create(**params)
return self._create_chat_result(response)
except Exception as e:
if run_manager:
run_manager.on_llm_error(e)
raise e
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""异步生成聊天响应。"""
newpartner_messages = self._convert_messages(messages)
params = {
"model": self.model,
"messages": newpartner_messages,
"temperature": self.temperature,
}
if self.max_tokens:
params["max_tokens"] = self.max_tokens
if stop:
params["stop"] = stop
params.update(kwargs)
try:
response = await self.async_client.chat.completions.create(**params)
return self._create_chat_result(response)
except Exception as e:
if run_manager:
await run_manager.on_llm_error(e)
raise e
def _convert_messages(self, messages: List[BaseMessage]) -> List[Dict[str, Any]]:
"""转换消息格式。"""
# 实现消息格式转换逻辑
converted = []
for message in messages:
# 根据NewPartner的API格式转换
converted.append({
"role": self._get_message_role(message),
"content": message.content,
})
return converted
def _get_message_role(self, message: BaseMessage) -> str:
"""获取消息角色。"""
# 根据消息类型返回相应的角色
if isinstance(message, HumanMessage):
return "user"
elif isinstance(message, AIMessage):
return "assistant"
elif isinstance(message, SystemMessage):
return "system"
else:
raise ValueError(f"不支持的消息类型: {type(message)}")
def _create_chat_result(self, response: Any) -> ChatResult:
"""创建聊天结果。"""
# 从API响应创建LangChain ChatResult
content = response.choices[0].message.content
ai_message = AIMessage(content=content)
generation = ChatGeneration(message=ai_message)
return ChatResult(generations=[generation])
5.2 测试和质量保证
# tests/test_chat_models.py
import pytest
from unittest.mock import Mock, patch
from langchain_newpartner import ChatNewPartner
from langchain_core.messages import HumanMessage, AIMessage
class TestChatNewPartner:
"""ChatNewPartner测试套件。
Partner包的标准测试模式:
1. 单元测试:测试核心功能
2. 集成测试:测试与第三方API的集成
3. 异步测试:测试异步功能
4. 错误处理测试:测试异常情况
5. 回调测试:测试回调机制
"""
def test_init(self):
"""测试初始化。"""
model = ChatNewPartner(
api_key="test-key",
model="test-model",
)
assert model.api_key == "test-key"
assert model.model == "test-model"
assert model._llm_type == "newpartner-chat"
@patch('newpartner_sdk.Client')
def test_generate(self, mock_client):
"""测试生成功能。"""
# 模拟API响应
mock_response = Mock()
mock_response.choices = [Mock()]
mock_response.choices[0].message.content = "Hello, world!"
mock_client.return_value.chat.completions.create.return_value = mock_response
# 创建模型实例
model = ChatNewPartner(api_key="test-key")
# 测试生成
messages = [HumanMessage(content="Hello")]
result = model._generate(messages)
assert len(result.generations) == 1
assert result.generations[0].message.content == "Hello, world!"
# 验证API调用
mock_client.return_value.chat.completions.create.assert_called_once()
@pytest.mark.asyncio
@patch('newpartner_sdk.AsyncClient')
async def test_agenerate(self, mock_async_client):
"""测试异步生成功能。"""
# 模拟异步API响应
mock_response = Mock()
mock_response.choices = [Mock()]
mock_response.choices[0].message.content = "Hello, async world!"
mock_async_client.return_value.chat.completions.create.return_value = mock_response
model = ChatNewPartner(api_key="test-key")
messages = [HumanMessage(content="Hello")]
result = await model._agenerate(messages)
assert len(result.generations) == 1
assert result.generations[0].message.content == "Hello, async world!"
def test_convert_messages(self):
"""测试消息转换。"""
model = ChatNewPartner(api_key="test-key")
messages = [
HumanMessage(content="Hello"),
AIMessage(content="Hi there!"),
]
converted = model._convert_messages(messages)
assert len(converted) == 2
assert converted[0]["role"] == "user"
assert converted[0]["content"] == "Hello"
assert converted[1]["role"] == "assistant"
assert converted[1]["content"] == "Hi there!"
@patch('newpartner_sdk.Client')
def test_error_handling(self, mock_client):
"""测试错误处理。"""
# 模拟API错误
mock_client.return_value.chat.completions.create.side_effect = Exception("API Error")
model = ChatNewPartner(api_key="test-key")
messages = [HumanMessage(content="Hello")]
with pytest.raises(Exception, match="API Error"):
model._generate(messages)
def test_callback_integration(self):
"""测试回调集成。"""
from langchain_core.callbacks import CallbackManagerForLLMRun
# 创建模拟回调管理器
run_manager = Mock(spec=CallbackManagerForLLMRun)
with patch('newpartner_sdk.Client') as mock_client:
# 模拟API错误
mock_client.return_value.chat.completions.create.side_effect = Exception("Test Error")
model = ChatNewPartner(api_key="test-key")
messages = [HumanMessage(content="Hello")]
with pytest.raises(Exception):
model._generate(messages, run_manager=run_manager)
# 验证错误回调被调用
run_manager.on_llm_error.assert_called_once()
# tests/integration_tests/test_newpartner_integration.py
import pytest
import os
from langchain_newpartner import ChatNewPartner
from langchain_core.messages import HumanMessage
@pytest.mark.skipif(
not os.getenv("NEWPARTNER_API_KEY"),
reason="需要NEWPARTNER_API_KEY环境变量"
)
class TestNewPartnerIntegration:
"""NewPartner集成测试。
这些测试需要真实的API密钥,通常在CI/CD环境中运行。
"""
def test_real_api_call(self):
"""测试真实API调用。"""
model = ChatNewPartner(
api_key=os.getenv("NEWPARTNER_API_KEY"),
)
messages = [HumanMessage(content="Hello, how are you?")]
result = model._generate(messages)
assert len(result.generations) > 0
assert result.generations[0].message.content
@pytest.mark.asyncio
async def test_real_async_api_call(self):
"""测试真实异步API调用。"""
model = ChatNewPartner(
api_key=os.getenv("NEWPARTNER_API_KEY"),
)
messages = [HumanMessage(content="Hello, how are you?")]
result = await model._agenerate(messages)
assert len(result.generations) > 0
assert result.generations[0].message.content
6. 总结
6.1 Partner包生态优势
LangChain Partner包生态系统的设计体现了现代软件架构的最佳实践:
- 标准化集成:统一的抽象接口确保一致的开发体验
- 独立演进:每个包独立版本控制,避免依赖冲突
- 轻量化设计:最小化依赖,提高安装和使用效率
- 质量保证:完整的测试覆盖和文档支持
- 社区驱动:开放的贡献模式和维护机制
6.2 生态系统发展趋势
mindmap
root((Partner包生态发展))
技术趋势
多模态集成
边缘计算支持
实时流处理
联邦学习
标准化
统一API规范
测试标准
文档规范
性能基准
生态扩展
更多Provider
垂直领域集成
企业级功能
开发工具链
质量提升
自动化测试
性能监控
安全审计
兼容性检查
通过深入理解Partner包的设计模式和实现机制,开发者能够更好地利用LangChain的生态系统,构建强大而灵活的AI应用,同时也能够贡献自己的集成包,丰富整个生态系统。