概述
AutoGPT AI Agent是平台的智能核心,通过…实现自主决策和执行能力。结合章的研究成果,Agent通过多模态输入处理、分层任务规划、智能记忆管理和持续学习机制,实现了接近人类认知水平的智能行为。深入剖析这些核心技术的实现原理和代码细节。
1. ReAct推理行动框架深度实现
1.1 ReAct架构设计理念
ReAct框架是AutoGPT智能决策的核心,将推理(Reasoning)和行动(Acting)有机结合:
- 推理阶段:分析当前情况,理解问题本质,制定行动策略
- 行动阶段:选择合适工具,执行具体操作,收集执行结果
- 观察阶段:分析行动效果,获取环境反馈,更新知识状态
- 反思阶段:评估整体进展,学习经验教训,优化决策策略
1.2 ReAct推理引擎架构图
graph TB
subgraph "ReAct推理引擎架构"
subgraph "感知层 - Perception Layer"
MultiModalInput[多模态输入感知]
ContextAnalyzer[上下文分析器]
EnvironmentMonitor[环境状态监控]
end
subgraph "认知层 - Cognition Layer"
ProblemAnalyzer[问题分析器]
GoalDecomposer[目标分解器]
StrategyPlanner[策略规划器]
RiskAssessor[风险评估器]
end
subgraph "决策层 - Decision Layer"
ActionSelector[行动选择器]
ToolMatcher[工具匹配器]
ParameterOptimizer[参数优化器]
ExecutionController[执行控制器]
end
subgraph "执行层 - Execution Layer"
ToolExecutor[工具执行器]
ResultCollector[结果收集器]
FeedbackProcessor[反馈处理器]
end
subgraph "学习层 - Learning Layer"
ExperienceRecorder[经验记录器]
PatternRecognizer[模式识别器]
StrategyOptimizer[策略优化器]
KnowledgeUpdater[知识更新器]
end
subgraph "记忆系统 - Memory System"
WorkingMemory[工作记忆]
EpisodicMemory[情景记忆]
SemanticMemory[语义记忆]
ProceduralMemory[程序记忆]
end
end
%% 信息流向
MultiModalInput --> ContextAnalyzer
ContextAnalyzer --> ProblemAnalyzer
ProblemAnalyzer --> GoalDecomposer
GoalDecomposer --> StrategyPlanner
StrategyPlanner --> RiskAssessor
RiskAssessor --> ActionSelector
ActionSelector --> ToolMatcher
ToolMatcher --> ParameterOptimizer
ParameterOptimizer --> ExecutionController
ExecutionController --> ToolExecutor
ToolExecutor --> ResultCollector
ResultCollector --> FeedbackProcessor
FeedbackProcessor --> ExperienceRecorder
ExperienceRecorder --> PatternRecognizer
PatternRecognizer --> StrategyOptimizer
StrategyOptimizer --> KnowledgeUpdater
%% 记忆交互
ProblemAnalyzer --> WorkingMemory
StrategyPlanner --> EpisodicMemory
ToolMatcher --> SemanticMemory
ExecutionController --> ProceduralMemory
WorkingMemory --> ContextAnalyzer
EpisodicMemory --> GoalDecomposer
SemanticMemory --> ActionSelector
ProceduralMemory --> ToolExecutor
1.3 ReAct推理引擎核心实现
# /autogpt_platform/backend/backend/blocks/agent_reasoning.py
import asyncio
import time
import uuid
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from enum import Enum
class ReasoningPhase(Enum):
"""推理阶段枚举"""
PERCEPTION = "perception" # 感知阶段
ANALYSIS = "analysis" # 分析阶段
PLANNING = "planning" # 规划阶段
ACTION = "action" # 行动阶段
OBSERVATION = "observation" # 观察阶段
REFLECTION = "reflection" # 反思阶段
@dataclass
class ReasoningStep:
"""推理步骤数据结构"""
phase: ReasoningPhase
input_data: Dict[str, Any]
reasoning_content: str
action_plan: Optional[Dict[str, Any]] = None
execution_result: Optional[Dict[str, Any]] = None
reflection_notes: Optional[str] = None
timestamp: float = 0.0
step_id: str = ""
def __post_init__(self):
if not self.timestamp:
self.timestamp = time.time()
if not self.step_id:
self.step_id = str(uuid.uuid4())
class ReActReasoningEngine:
"""
ReAct推理引擎核心实现
章的ReAct方法论,实现完整的推理-行动循环
核心特性:
1. 结构化推理过程
2. 上下文感知决策
3. 自适应策略调整
4. 经验学习机制
"""
def __init__(self, llm_client, tool_registry, memory_manager):
self.llm_client = llm_client
self.tool_registry = tool_registry
self.memory_manager = memory_manager
# 推理历史和上下文
self.reasoning_history: List[ReasoningStep] = []
self.current_context = {}
self.goal_stack = []
# 提示模板
self.prompt_templates = self._initialize_prompt_templates()
# 推理配置
self.max_reasoning_steps = 50
self.max_thinking_time = 300 # 5分钟思考时间限制
async def reason_and_act(
self,
goal: str,
initial_context: Dict[str, Any] = None,
available_tools: List[str] = None
) -> Dict[str, Any]:
"""
执行ReAct推理和行动循环
这是Agent智能决策的核心方法,实现完整的推理-行动-观察-反思循环
参数:
goal: 要达成的目标描述
initial_context: 初始上下文信息
available_tools: 可用工具列表
返回:
推理和执行的完整结果
"""
logger.info(f"开始ReAct推理循环,目标: {goal}")
# 初始化推理环境
self.current_context = initial_context or {}
self.goal_stack = [goal]
self.reasoning_history.clear()
reasoning_start_time = time.time()
step_count = 0
try:
while self.goal_stack and step_count < self.max_reasoning_steps:
step_count += 1
# 检查时间限制
if time.time() - reasoning_start_time > self.max_thinking_time:
logger.warning("推理时间超限,终止推理循环")
break
current_goal = self.goal_stack[-1] # 当前目标
# 第一阶段:感知和分析
perception_result = await self._perception_phase(current_goal)
analysis_result = await self._analysis_phase(perception_result)
# 第二阶段:规划和决策
planning_result = await self._planning_phase(analysis_result)
# 检查是否需要进一步分解目标
if planning_result.get("requires_decomposition", False):
sub_goals = planning_result.get("sub_goals", [])
self.goal_stack.extend(reversed(sub_goals)) # 逆序添加,后进先出
continue
# 第三阶段:行动执行
action_result = await self._action_phase(planning_result)
# 第四阶段:观察和反思
observation_result = await self._observation_phase(action_result)
reflection_result = await self._reflection_phase(observation_result)
# 更新上下文和记忆
await self._update_context_and_memory(reflection_result)
# 检查目标完成状态
if reflection_result.get("goal_achieved", False):
completed_goal = self.goal_stack.pop()
logger.info(f"目标完成: {completed_goal}")
if not self.goal_stack:
logger.info("所有目标已完成,推理循环结束")
break
elif reflection_result.get("goal_failed", False):
failed_goal = self.goal_stack.pop()
logger.warning(f"目标失败: {failed_goal}")
# 可以选择重新规划或放弃
if reflection_result.get("should_retry", False):
self.goal_stack.append(failed_goal)
# 避免过快循环
await asyncio.sleep(0.1)
# 生成推理总结
reasoning_summary = await self._generate_reasoning_summary()
return {
"goal": goal,
"success": len(self.goal_stack) == 0,
"steps_taken": step_count,
"reasoning_time": time.time() - reasoning_start_time,
"reasoning_history": self.reasoning_history,
"final_context": self.current_context,
"summary": reasoning_summary,
}
except Exception as e:
logger.error(f"ReAct推理循环异常: {e}")
return {
"goal": goal,
"success": False,
"error": str(e),
"steps_taken": step_count,
"reasoning_history": self.reasoning_history,
}
async def _perception_phase(self, goal: str) -> Dict[str, Any]:
"""
感知阶段:收集和分析当前环境信息
感知内容:
1. 当前环境状态
2. 可用资源和工具
3. 历史经验和知识
4. 约束条件和限制
"""
logger.debug(f"感知阶段开始,目标: {goal}")
# 收集环境信息
environment_state = await self._collect_environment_state()
# 检索相关记忆
relevant_memories = await self.memory_manager.retrieve_relevant_memories(
query=goal,
memory_types=["short_term", "long_term", "skill"],
max_results=5
)
# 分析可用工具
available_tools = await self._analyze_available_tools(goal)
# 识别约束条件
constraints = await self._identify_constraints(goal, environment_state)
perception_result = {
"goal": goal,
"environment_state": environment_state,
"relevant_memories": relevant_memories,
"available_tools": available_tools,
"constraints": constraints,
"perception_quality": self._assess_perception_quality(environment_state),
}
# 记录感知步骤
step = ReasoningStep(
phase=ReasoningPhase.PERCEPTION,
input_data={"goal": goal},
reasoning_content=f"感知到环境状态,发现{len(available_tools)}个可用工具,{len(constraints)}个约束条件",
)
self.reasoning_history.append(step)
return perception_result
async def _analysis_phase(self, perception_data: Dict[str, Any]) -> Dict[str, Any]:
"""
分析阶段:深度分析问题本质和解决方案
分析内容:
1. 问题复杂度评估
2. 解决方案候选集生成
3. 资源需求分析
4. 风险因素识别
"""
goal = perception_data["goal"]
environment_state = perception_data["environment_state"]
available_tools = perception_data["available_tools"]
logger.debug(f"分析阶段开始,分析目标: {goal}")
# 构建分析提示词
analysis_prompt = self._build_analysis_prompt(perception_data)
# 调用LLM
analysis_response = await self.llm_client.generate(
prompt=analysis_prompt,
max_tokens=1000,
temperature=0.3, # 较低温度确保逻辑性
)
# 解析分析结果
analysis_result = self._parse_analysis_response(analysis_response)
# 增强分析结果
analysis_result.update({
"complexity_score": await self._calculate_complexity_score(goal),
"resource_requirements": await self._estimate_resource_requirements(analysis_result),
"success_probability": await self._estimate_success_probability(analysis_result),
"alternative_approaches": await self._generate_alternative_approaches(analysis_result),
})
# 记录分析步骤
step = ReasoningStep(
phase=ReasoningPhase.ANALYSIS,
input_data=perception_data,
reasoning_content=analysis_response,
)
self.reasoning_history.append(step)
return analysis_result
async def _planning_phase(self, analysis_data: Dict[str, Any]) -> Dict[str, Any]:
"""
规划阶段:制定详细的执行计划
规划内容:
1. 执行策略选择
2. 步骤序列规划
3. 资源分配方案
4. 应急预案制定
"""
logger.debug("规划阶段开始,制定执行计划")
complexity_score = analysis_data.get("complexity_score", 0.5)
# 检查是否需要分解
if complexity_score > 0.7:
# 复杂任务需要进一步分解
decomposition_result = await self._decompose_complex_goal(analysis_data)
if decomposition_result["should_decompose"]:
return {
"requires_decomposition": True,
"sub_goals": decomposition_result["sub_goals"],
"decomposition_strategy": decomposition_result["strategy"],
}
# 构建执行计划
execution_plan = await self._build_execution_plan(analysis_data)
# 生成应急预案
contingency_plans = await self._generate_contingency_plans(execution_plan)
planning_result = {
"requires_decomposition": False,
"execution_plan": execution_plan,
"contingency_plans": contingency_plans,
"estimated_duration": execution_plan.get("duration", 0),
"confidence_level": execution_plan.get("confidence", 0.5),
}
# 记录规划步骤
step = ReasoningStep(
phase=ReasoningPhase.PLANNING,
input_data=analysis_data,
reasoning_content=f"制定执行计划,预计耗时{execution_plan.get('duration', 0)}秒",
action_plan=execution_plan,
)
self.reasoning_history.append(step)
return planning_result
async def _action_phase(self, planning_data: Dict[str, Any]) -> Dict[str, Any]:
"""
行动阶段:执行具体的操作
执行内容:
1. 工具调用执行
2. 参数动态调整
3. 实时监控和控制
4. 异常处理和恢复
"""
execution_plan = planning_data["execution_plan"]
logger.debug(f"行动阶段开始,执行计划: {execution_plan.get('name', 'unknown')}")
action_start_time = time.time()
try:
# 准备执行环境
execution_context = await self._prepare_execution_context(execution_plan)
# 执行主要行动
primary_result = await self._execute_primary_action(
execution_plan,
execution_context
)
# 执行后续行动(如果需要)
follow_up_results = []
if execution_plan.get("follow_up_actions"):
for follow_up in execution_plan["follow_up_actions"]:
follow_up_result = await self._execute_follow_up_action(
follow_up, execution_context, primary_result
)
follow_up_results.append(follow_up_result)
action_result = {
"success": True,
"primary_result": primary_result,
"follow_up_results": follow_up_results,
"execution_time": time.time() - action_start_time,
"tools_used": execution_plan.get("tools", []),
}
except Exception as e:
logger.error(f"行动执行失败: {e}")
# 尝试应急预案
contingency_result = await self._execute_contingency_plan(
planning_data.get("contingency_plans", []),
str(e)
)
action_result = {
"success": False,
"error": str(e),
"contingency_result": contingency_result,
"execution_time": time.time() - action_start_time,
}
# 记录行动步骤
step = ReasoningStep(
phase=ReasoningPhase.ACTION,
input_data=planning_data,
reasoning_content=f"执行行动计划:{execution_plan.get('description', '')}",
action_plan=execution_plan,
execution_result=action_result,
)
self.reasoning_history.append(step)
return action_result
async def _observation_phase(self, action_data: Dict[str, Any]) -> Dict[str, Any]:
"""
观察阶段:分析行动结果和环境变化
观察内容:
1. 行动结果分析
2. 环境状态变化
3. 新信息获取
4. 异常情况识别
"""
logger.debug("观察阶段开始,分析行动结果")
# 分析行动结果
result_analysis = await self._analyze_action_result(action_data)
# 检测环境变化
environment_changes = await self._detect_environment_changes()
# 提取新获得的信息
new_information = await self._extract_new_information(
action_data, environment_changes
)
# 识别异常或意外情况
anomalies = await self._detect_anomalies(action_data, environment_changes)
observation_result = {
"result_analysis": result_analysis,
"environment_changes": environment_changes,
"new_information": new_information,
"anomalies": anomalies,
"observation_quality": self._assess_observation_quality(result_analysis),
}
# 记录观察步骤
step = ReasoningStep(
phase=ReasoningPhase.OBSERVATION,
input_data=action_data,
reasoning_content=f"观察到{len(new_information)}条新信息,{len(anomalies)}个异常情况",
)
self.reasoning_history.append(step)
return observation_result
async def _reflection_phase(self, observation_data: Dict[str, Any]) -> Dict[str, Any]:
"""
反思阶段:评估进展和优化策略
反思内容:
1. 目标达成度评估
2. 策略有效性分析
3. 学习经验提取
4. 下一步行动建议
"""
logger.debug("反思阶段开始,评估整体进展")
# 构建反思提示词
reflection_prompt = self._build_reflection_prompt(observation_data)
# 调用LLM进行反思
reflection_response = await self.llm_client.generate(
prompt=reflection_prompt,
max_tokens=800,
temperature=0.4,
)
# 解析反思结果
reflection_analysis = self._parse_reflection_response(reflection_response)
# 评估目标完成状态
goal_status = await self._evaluate_goal_status(
self.goal_stack[-1] if self.goal_stack else "",
observation_data,
reflection_analysis
)
# 生成学习经验
learning_experience = await self._extract_learning_experience(
observation_data, reflection_analysis
)
reflection_result = {
"reflection_analysis": reflection_analysis,
"goal_status": goal_status,
"learning_experience": learning_experience,
"goal_achieved": goal_status.get("achieved", False),
"goal_failed": goal_status.get("failed", False),
"should_retry": goal_status.get("should_retry", False),
"next_action_suggestion": reflection_analysis.get("next_action", ""),
}
# 记录反思步骤
step = ReasoningStep(
phase=ReasoningPhase.REFLECTION,
input_data=observation_data,
reasoning_content=reflection_response,
reflection_notes=reflection_analysis.get("key_insights", ""),
)
self.reasoning_history.append(step)
return reflection_result
### 1.4 关键函数与调用链总览(Agent)
- ReAct 主循环
- 关键函数:`reason_and_act()` → `_perception_phase()` → `_analysis_phase()` → `_planning_phase()` → `_action_phase()` → `_observation_phase()` → `_reflection_phase()` → `_update_context_and_memory()`
- 典型调用链:外部调用 → 初始化上下文/目标 → 循环各阶段 → 检查完成/失败/重试 → 生成总结
- 工具执行
- 关键函数:`_execute_primary_action()` → `tool_registry.get_tool()` → `tool.execute(parameters, context)` → 返回 `result`
- 记忆检索与更新
- 关键函数:`memory_manager.retrieve_relevant_memories()`、`_update_context_and_memory()`
### 1.5 ReAct 端到端时序图(阶段级)
```mermaid
sequenceDiagram
participant Caller as 外部调用
participant RA as reason_and_act
participant P as perception
participant A as analysis
participant PL as planning
participant AC as action
participant O as observation
participant R as reflection
participant M as memory
Caller->>RA: 调用(goal, context)
RA->>P: _perception_phase()
P-->>RA: perception_result
RA->>A: _analysis_phase(perception_result)
A-->>RA: analysis_result
RA->>PL: _planning_phase(analysis_result)
PL-->>RA: planning_result
RA->>AC: _action_phase(planning_result)
AC-->>RA: action_result
RA->>O: _observation_phase(action_result)
O-->>RA: observation_result
RA->>R: _reflection_phase(observation_result)
R-->>RA: reflection_result
RA->>M: _update_context_and_memory(reflection_result)
M-->>RA: updated
RA-->>Caller: 最终summary/状态
1.6 核心类结构图(Agent)
classDiagram
class ReActReasoningEngine {
+reason_and_act(...)
-_perception_phase(...)
-_analysis_phase(...)
-_planning_phase(...)
-_action_phase(...)
-_observation_phase(...)
-_reflection_phase(...)
}
class ReasoningStep
class ReasoningPhase
ReActReasoningEngine --> ReasoningStep : produces
ReActReasoningEngine --> ReasoningPhase : uses
附:汇总与去重说明(Agent)
-
ReAct 主循环的阶段细节集中在“1.3/1.5”,后续子章节仅补充示例代码,不再重复流程。
-
工具执行/记忆更新的调用链在“1.4”统一汇总,删除零散重复描述。
def _build_analysis_prompt(self, perception_data: Dict[str, Any]) -> str: “““构建分析阶段的提示词”””
goal = perception_data["goal"] environment = perception_data["environment_state"] tools = perception_data["available_tools"] memories = perception_data["relevant_memories"] return f"""
请深度分析以下任务:
目标:{goal}
当前环境: {self._format_environment_state(environment)}
可用工具: {self._format_tool_list(tools)}
相关经验: {self._format_memory_list(memories)}
请从以下维度进行分析:
- 问题本质:这个目标的核心问题是什么?
- 复杂度评估:任务的复杂程度如何?需要多少步骤?
- 关键挑战:执行过程中可能遇到的主要困难?
- 成功要素:完成任务需要的关键因素?
- 风险评估:可能的失败原因和风险点?
分析结果请结构化输出: 问题本质:[分析内容] 复杂度:[1-10分] - [说明] 关键挑战:[挑战1]、[挑战2]… 成功要素:[要素1]、[要素2]… 风险评估:[风险1]、[风险2]… """
def _build_reflection_prompt(self, observation_data: Dict[str, Any]) -> str:
"""构建反思阶段的提示词"""
result_analysis = observation_data["result_analysis"]
new_info = observation_data["new_information"]
anomalies = observation_data["anomalies"]
return f"""
请反思刚才的行动结果:
行动结果分析: {self._format_result_analysis(result_analysis)}
新获得的信息: {self._format_information_list(new_info)}
发现的异常: {self._format_anomaly_list(anomalies)}
推理历史: {self._format_reasoning_history()}
请从以下角度进行反思:
- 效果评估:行动是否达到了预期效果?
- 策略分析:当前策略是否合适?需要调整吗?
- 学习收获:从这次行动中学到了什么?
- 问题识别:发现了什么新问题或挑战?
- 下一步建议:接下来应该怎么做?
反思结果: 效果评估:[评估内容] 策略分析:[分析内容] 学习收获:[收获内容] 问题识别:[问题内容] 下一步建议:[建议内容] """
async def _execute_primary_action(
self,
execution_plan: Dict[str, Any],
execution_context: Dict[str, Any]
) -> Dict[str, Any]:
"""执行主要行动"""
tool_name = execution_plan.get("primary_tool")
if not tool_name:
raise ValueError("执行计划中缺少主要工具")
# 获取工具实例
tool = await self.tool_registry.get_tool(tool_name)
if not tool:
raise ValueError(f"工具 {tool_name} 不可用")
# 准备工具参数
tool_params = execution_plan.get("tool_parameters", {})
# 执行工具调用
logger.info(f"执行主要行动:使用工具 {tool_name}")
start_time = time.time()
try:
result = await tool.execute(
parameters=tool_params,
context=execution_context
)
execution_time = time.time() - start_time
return {
"success": True,
"tool_name": tool_name,
"result": result,
"execution_time": execution_time,
"parameters_used": tool_params,
}
except Exception as e:
execution_time = time.time() - start_time
return {
"success": False,
"tool_name": tool_name,
"error": str(e),
"execution_time": execution_time,
"parameters_used": tool_params,
}
async def _generate_reasoning_summary(self) -> Dict[str, Any]:
"""生成推理过程总结"""
if not self.reasoning_history:
return {"summary": "无推理历史"}
# 统计各阶段的步骤数
phase_counts = {}
for step in self.reasoning_history:
phase = step.phase.value
phase_counts[phase] = phase_counts.get(phase, 0) + 1
# 提取关键决策点
key_decisions = [
step for step in self.reasoning_history
if step.phase in [ReasoningPhase.PLANNING, ReasoningPhase.ACTION]
]
# 分析推理质量
reasoning_quality = await self._assess_reasoning_quality()
# 提取学习经验
lessons_learned = await self._extract_lessons_learned()
return {
"total_steps": len(self.reasoning_history),
"phase_distribution": phase_counts,
"key_decisions": [
{
"step_id": step.step_id,
"phase": step.phase.value,
"content": step.reasoning_content[:100] + "..." if len(step.reasoning_content) > 100 else step.reasoning_content,
"timestamp": step.timestamp,
}
for step in key_decisions
],
"reasoning_quality": reasoning_quality,
"lessons_learned": lessons_learned,
"performance_metrics": self._calculate_performance_metrics(),
}
def _parse_analysis_response(self, response: str) -> Dict[str, Any]:
"""解析LLM分析响应"""
import re
# 提取结构化信息
patterns = {
"problem_essence": r"问题本质:(.+?)(?=复杂度:|$)",
"complexity": r"复杂度:(\d+).*?-\s*(.+?)(?=关键挑战:|$)",
"challenges": r"关键挑战:(.+?)(?=成功要素:|$)",
"success_factors": r"成功要素:(.+?)(?=风险评估:|$)",
"risk_assessment": r"风险评估:(.+?)$",
}
parsed_result = {}
for key, pattern in patterns.items():
match = re.search(pattern, response, re.DOTALL)
if match:
if key == "complexity":
parsed_result["complexity_score"] = int(match.group(1)) / 10.0
parsed_result["complexity_description"] = match.group(2).strip()
else:
parsed_result[key] = match.group(1).strip()
return parsed_result
def _parse_reflection_response(self, response: str) -> Dict[str, Any]:
"""解析反思响应"""
import re
patterns = {
"effectiveness": r"效果评估:(.+?)(?=策略分析:|$)",
"strategy_analysis": r"策略分析:(.+?)(?=学习收获:|$)",
"learning_gains": r"学习收获:(.+?)(?=问题识别:|$)",
"problem_identification": r"问题识别:(.+?)(?=下一步建议:|$)",
"next_action": r"下一步建议:(.+?)$",
}
parsed_result = {}
for key, pattern in patterns.items():
match = re.search(pattern, response, re.DOTALL)
if match:
parsed_result[key] = match.group(1).strip()
# 提取关键洞察
insights = []
if parsed_result.get("learning_gains"):
insights.extend(
insight.strip()
for insight in parsed_result["learning_gains"].split("、")
if insight.strip()
)
parsed_result["key_insights"] = insights
return parsed_result
def _initialize_prompt_templates(self) -> Dict[str, str]:
"""初始化提示模板"""
return {
"system": """
你是一个高级AI代理,具备强大的推理和行动能力。
核心能力:
- 深度分析:理解问题本质,识别关键要素
- 策略规划:制定合理可行的执行计划
- 工具使用:熟练使用各种工具完成任务
- 学习适应:从经验中学习,持续优化策略
工作原则:
- 逻辑清晰:每一步推理都要有明确的逻辑依据
- 行动高效:选择最有效的工具和方法
- 学习成长:从成功和失败中都要提取经验
- 用户导向:始终以用户目标为中心
请严格按照ReAct框架进行推理和行动。 “”",
"decomposition": """
任务分解原则:
- 子任务应该相对独立,可以并行或串行执行
- 每个子任务都有明确的输入、输出和成功标准
- 子任务的粒度要合适,不能过于细碎或宽泛
- 考虑依赖关系和执行顺序
分解策略:
- 功能性分解:按功能模块划分
- 时序性分解:按执行时间顺序划分
- 资源性分解:按所需资源类型划分
- 复杂性分解:按难度级别划分 “”", }
## 2. 多模态智能体技术实现
### 2.1 多模态输入处理架构
```python
# /autogpt_platform/backend/backend/blocks/multimodal_agent.py
import asyncio
import base64
import io
from typing import Dict, List, Any, Optional, Union
from PIL import Image
import speech_recognition as sr
import cv2
import numpy as np
class MultiModalProcessor:
"""
多模态处理器
章的多模态AI实现最佳实践
支持模态:
1. 文本:自然语言理解和生成
2. 图像:图像识别、分析和生成
3. 音频:语音识别和合成
4. 视频:视频理解和处理
"""
def __init__(self):
self.text_processor = TextModalityProcessor()
self.image_processor = ImageModalityProcessor()
self.audio_processor = AudioModalityProcessor()
self.video_processor = VideoModalityProcessor()
# 跨模态理解模型
self.cross_modal_model = CrossModalUnderstandingModel()
async def process_multimodal_input(
self,
inputs: Dict[str, Any],
task_context: str = ""
) -> Dict[str, Any]:
"""
处理多模态输入
处理流程:
1. 识别输入模态类型
2. 并行处理各模态数据
3. 提取特征表示
4. 跨模态对齐和融合
5. 生成统一表示
"""
logger.info(f"开始处理多模态输入,包含模态: {list(inputs.keys())}")
# 第一步:模态识别和预处理
modality_data = {}
processing_tasks = []
for modality_type, data in inputs.items():
if data is None:
continue
processor = self._get_processor(modality_type)
if processor:
task = asyncio.create_task(
processor.process(data, task_context)
)
processing_tasks.append((modality_type, task))
# 第二步:并行处理所有模态
for modality_type, task in processing_tasks:
try:
processed_data = await task
modality_data[modality_type] = processed_data
logger.debug(f"{modality_type} 模态处理完成")
except Exception as e:
logger.error(f"{modality_type} 模态处理失败: {e}")
modality_data[modality_type] = {
"success": False,
"error": str(e)
}
# 第三步:跨模态理解和融合
if len(modality_data) > 1:
cross_modal_result = await self.cross_modal_model.understand(
modality_data, task_context
)
else:
cross_modal_result = {"type": "single_modal"}
return {
"modality_data": modality_data,
"cross_modal_understanding": cross_modal_result,
"unified_representation": await self._create_unified_representation(
modality_data, cross_modal_result
),
"processing_summary": self._generate_processing_summary(modality_data),
}
def _get_processor(self, modality_type: str):
"""获取对应的模态处理器"""
processors = {
"text": self.text_processor,
"image": self.image_processor,
"audio": self.audio_processor,
"video": self.video_processor,
}
return processors.get(modality_type)
class TextModalityProcessor:
"""文本模态处理器"""
async def process(self, text_data: str, context: str = "") -> Dict[str, Any]:
"""
处理文本输入
处理内容:
1. 语言检测和标准化
2. 情感分析和意图识别
3. 关键信息提取
4. 语义特征表示
"""
# 语言检测
language = await self._detect_language(text_data)
# 情感分析
sentiment = await self._analyze_sentiment(text_data)
# 意图识别
intent = await self._identify_intent(text_data, context)
# 关键信息提取
key_info = await self._extract_key_information(text_data)
# 语义特征
semantic_features = await self._extract_semantic_features(text_data)
return {
"success": True,
"modality": "text",
"original_text": text_data,
"language": language,
"sentiment": sentiment,
"intent": intent,
"key_information": key_info,
"semantic_features": semantic_features,
"processing_time": time.time(),
}
async def _detect_language(self, text: str) -> str:
"""检测文本语言"""
# 简化实现,实际可以使用langdetect等库
if any('\u4e00' <= char <= '\u9fff' for char in text):
return "zh-CN"
else:
return "en-US"
async def _analyze_sentiment(self, text: str) -> Dict[str, Any]:
"""分析文本情感"""
# 简化的情感分析,实际可以使用BERT等模型
positive_words = ["好", "棒", "优秀", "满意", "成功"]
negative_words = ["坏", "差", "失败", "不满", "错误"]
positive_count = sum(1 for word in positive_words if word in text)
negative_count = sum(1 for word in negative_words if word in text)
if positive_count > negative_count:
polarity = "positive"
score = 0.7
elif negative_count > positive_count:
polarity = "negative"
score = -0.7
else:
polarity = "neutral"
score = 0.0
return {
"polarity": polarity,
"score": score,
"confidence": 0.8,
}
async def _identify_intent(self, text: str, context: str) -> Dict[str, Any]:
"""识别用户意图"""
# 基于关键词和模式的意图识别
intent_patterns = {
"create": ["创建", "生成", "制作", "建立"],
"search": ["搜索", "查找", "寻找", "查询"],
"analyze": ["分析", "研究", "评估", "检查"],
"modify": ["修改", "更新", "编辑", "调整"],
"delete": ["删除", "移除", "清除", "取消"],
}
detected_intents = []
for intent_type, keywords in intent_patterns.items():
if any(keyword in text for keyword in keywords):
detected_intents.append(intent_type)
primary_intent = detected_intents[0] if detected_intents else "unknown"
return {
"primary_intent": primary_intent,
"all_intents": detected_intents,
"confidence": 0.8 if detected_intents else 0.3,
}
class ImageModalityProcessor:
"""图像模态处理器"""
async def process(self, image_data: Union[str, bytes], context: str = "") -> Dict[str, Any]:
"""
处理图像输入
处理内容:
1. 图像格式识别和转换
2. 对象检测和识别
3. 场景理解和描述
4. 视觉特征提取
"""
try:
# 图像加载和预处理
image = await self._load_and_preprocess_image(image_data)
# 对象检测
detected_objects = await self._detect_objects(image)
# 场景分析
scene_analysis = await self._analyze_scene(image)
# 生成图像描述
image_description = await self._generate_image_description(
image, detected_objects, scene_analysis
)
# 提取视觉特征
visual_features = await self._extract_visual_features(image)
return {
"success": True,
"modality": "image",
"image_info": {
"size": image.size,
"mode": image.mode,
"format": getattr(image, 'format', 'unknown'),
},
"detected_objects": detected_objects,
"scene_analysis": scene_analysis,
"description": image_description,
"visual_features": visual_features,
"processing_time": time.time(),
}
except Exception as e:
logger.error(f"图像处理失败: {e}")
return {
"success": False,
"modality": "image",
"error": str(e),
}
async def _load_and_preprocess_image(self, image_data: Union[str, bytes]) -> Image.Image:
"""加载和预处理图像"""
if isinstance(image_data, str):
if image_data.startswith('data:image'):
# Base64编码的图像
header, encoded = image_data.split(',', 1)
image_bytes = base64.b64decode(encoded)
image = Image.open(io.BytesIO(image_bytes))
elif image_data.startswith(('http://', 'https://')):
# 网络图像
async with aiohttp.ClientSession() as session:
async with session.get(image_data) as response:
image_bytes = await response.read()
image = Image.open(io.BytesIO(image_bytes))
else:
# 本地文件路径
image = Image.open(image_data)
else:
# 直接的字节数据
image = Image.open(io.BytesIO(image_data))
# 图像预处理
if image.mode != 'RGB':
image = image.convert('RGB')
# 调整大小(如果太大)
max_size = (1024, 1024)
if image.size[0] > max_size[0] or image.size[1] > max_size[1]:
image.thumbnail(max_size, Image.Resampling.LANCZOS)
return image
async def _detect_objects(self, image: Image.Image) -> List[Dict[str, Any]]:
"""对象检测(简化实现)"""
# 这里可以集成YOLO、DETR等对象检测模型
# 简化实现返回模拟结果
detected_objects = [
{
"label": "person",
"confidence": 0.95,
"bbox": [100, 100, 200, 300],
},
{
"label": "computer",
"confidence": 0.87,
"bbox": [250, 150, 400, 250],
}
]
return detected_objects
async def _analyze_scene(self, image: Image.Image) -> Dict[str, Any]:
"""场景分析"""
# 场景分类(室内/室外、办公室/家庭等)
scene_classification = await self._classify_scene(image)
# 环境光照分析
lighting_analysis = await self._analyze_lighting(image)
# 空间布局分析
spatial_layout = await self._analyze_spatial_layout(image)
return {
"scene_type": scene_classification,
"lighting": lighting_analysis,
"spatial_layout": spatial_layout,
}
3. 智能记忆管理系统
3.1 分层记忆架构
# /autogpt_platform/backend/backend/blocks/memory_management.py
class IntelligentMemorySystem:
"""
智能记忆管理系统
通过...实现
记忆层次:
1. 感觉记忆:短暂存储感知信息
2. 工作记忆:当前任务相关的活跃信息
3. 短期记忆:近期经验和学习内容
4. 长期记忆:重要知识和技能
5. 程序记忆:自动化的操作流程
"""
def __init__(self, vector_db, graph_db, cache_manager):
self.vector_db = vector_db # 向量数据库用于语义检索
self.graph_db = graph_db # 图数据库用于关系存储
self.cache_manager = cache_manager # 缓存管理器
# 不同层次的记忆存储
self.sensory_memory = SensoryMemoryBuffer(capacity=100, retention_time=2)
self.working_memory = WorkingMemoryManager(capacity=7, attention_span=300)
self.short_term_memory = ShortTermMemoryStore(capacity=1000, retention_days=7)
self.long_term_memory = LongTermMemoryStore(vector_db, graph_db)
self.procedural_memory = ProceduralMemoryStore(cache_manager)
# 记忆管理策略
self.consolidation_scheduler = MemoryConsolidationScheduler()
self.forgetting_mechanism = SelectiveForgettingMechanism()
async def store_experience(
self,
experience: Dict[str, Any],
importance_hints: Dict[str, float] = None
) -> str:
"""
存储经验到记忆系统
存储策略:
1. 立即存入感觉记忆
2. 根据注意力机制筛选进入工作记忆
3. 基于重要性评估决定短期/长期存储
4. 程序性知识自动提取到程序记忆
参数:
experience: 经验数据
importance_hints: 重要性提示
返回:
记忆ID
"""
memory_id = str(uuid.uuid4())
timestamp = time.time()
# 增强经验数据
enhanced_experience = {
"id": memory_id,
"timestamp": timestamp,
"content": experience,
"importance_hints": importance_hints or {},
}
# 第一步:存入感觉记忆
await self.sensory_memory.store(enhanced_experience)
# 第二步:注意力筛选
attention_score = await self._calculate_attention_score(enhanced_experience)
if attention_score > 0.5:
# 进入工作记忆
await self.working_memory.add(enhanced_experience)
# 第三步:重要性评估
importance_score = await self._evaluate_importance(enhanced_experience)
if importance_score > 0.7:
# 直接进入长期记忆
await self.long_term_memory.store(enhanced_experience)
logger.debug(f"高重要性经验直接存入长期记忆: {memory_id}")
elif importance_score > 0.3:
# 先存入短期记忆
await self.short_term_memory.store(enhanced_experience)
logger.debug(f"经验存入短期记忆: {memory_id}")
# 第四步:提取程序性知识
procedural_knowledge = await self._extract_procedural_knowledge(enhanced_experience)
if procedural_knowledge:
await self.procedural_memory.update(procedural_knowledge)
# 触发记忆整理(异步执行)
asyncio.create_task(self._schedule_memory_consolidation())
return memory_id
async def retrieve_relevant_memories(
self,
query: str,
context: Dict[str, Any] = None,
max_results: int = 10,
memory_types: List[str] = None
) -> List[Dict[str, Any]]:
"""
检索相关记忆
检索策略:
1. 语义相似度检索
2. 时间相关性过滤
3. 重要性权重调整
4. 上下文相关性匹配
参数:
query: 检索查询
context: 上下文信息
max_results: 最大结果数
memory_types: 记忆类型筛选
返回:
相关记忆列表
"""
logger.debug(f"检索相关记忆,查询: {query}")
if memory_types is None:
memory_types = ["working", "short_term", "long_term", "procedural"]
# 并行从不同记忆存储中检索
retrieval_tasks = []
if "working" in memory_types:
retrieval_tasks.append(
("working", self.working_memory.retrieve(query, context))
)
if "short_term" in memory_types:
retrieval_tasks.append(
("short_term", self.short_term_memory.retrieve(query, context))
)
if "long_term" in memory_types:
retrieval_tasks.append(
("long_term", self.long_term_memory.retrieve(query, context))
)
if "procedural" in memory_types:
retrieval_tasks.append(
("procedural", self.procedural_memory.retrieve(query, context))
)
# 收集检索结果
all_memories = []
for memory_type, retrieval_task in retrieval_tasks:
try:
memories = await retrieval_task
for memory in memories:
memory["source_type"] = memory_type
all_memories.append(memory)
except Exception as e:
logger.error(f"从{memory_type}记忆检索失败: {e}")
# 记忆融合和排序
fused_memories = await self._fuse_and_rank_memories(
all_memories, query, context
)
return fused_memories[:max_results]
async def _calculate_attention_score(self, experience: Dict[str, Any]) -> float:
"""
计算注意力分数
注意力机制基于:
1. 新颖性:信息的新颖程度
2. 相关性:与当前目标的相关程度
3. 紧急性:信息的时间敏感性
4. 情感强度:体验的情感冲击
"""
content = experience["content"]
# 新颖性评估
novelty_score = await self._assess_novelty(content)
# 相关性评估
relevance_score = await self._assess_relevance(content)
# 紧急性评估
urgency_score = await self._assess_urgency(content)
# 情感强度评估
emotional_score = await self._assess_emotional_intensity(content)
# 加权计算注意力分数
attention_score = (
novelty_score * 0.3 +
relevance_score * 0.4 +
urgency_score * 0.2 +
emotional_score * 0.1
)
return min(1.0, max(0.0, attention_score))
async def _evaluate_importance(self, experience: Dict[str, Any]) -> float:
"""
评估记忆重要性
重要性维度:
1. 目标相关性:对实现目标的重要程度
2. 学习价值:对未来决策的参考价值
3. 独特性:信息的稀有程度
4. 影响范围:对系统行为的影响程度
"""
content = experience["content"]
hints = experience.get("importance_hints", {})
# 目标相关性
goal_relevance = hints.get("goal_relevance", 0.5)
# 学习价值
learning_value = await self._assess_learning_value(content)
# 独特性
uniqueness = await self._assess_uniqueness(content)
# 影响范围
impact_scope = hints.get("impact_scope", 0.5)
# 计算综合重要性
importance_score = (
goal_relevance * 0.35 +
learning_value * 0.25 +
uniqueness * 0.2 +
impact_scope * 0.2
)
return min(1.0, max(0.0, importance_score))
class WorkingMemoryManager:
"""
工作记忆管理器
模拟人类工作记忆的特性:
1. 有限容量(7±2原则)
2. 快速访问
3. 主动维护
4. 干扰遗忘
"""
def __init__(self, capacity: int = 7, attention_span: int = 300):
self.capacity = capacity
self.attention_span = attention_span # 注意力保持时间(秒)
self.active_items: List[Dict[str, Any]] = []
self.access_times: Dict[str, float] = {}
async def add(self, item: Dict[str, Any]) -> bool:
"""
添加项目到工作记忆
添加策略:
1. 检查容量限制
2. 移除最久未访问的项目
3. 添加新项目
4. 更新访问时间
"""
item_id = item["id"]
current_time = time.time()
# 检查是否已存在
existing_item = next(
(item for item in self.active_items if item["id"] == item_id),
None
)
if existing_item:
# 更新现有项目
existing_item.update(item)
self.access_times[item_id] = current_time
return True
# 检查容量限制
if len(self.active_items) >= self.capacity:
# 移除最久未访问的项目
oldest_id = min(self.access_times.keys(), key=lambda k: self.access_times[k])
await self._remove_item(oldest_id)
# 添加新项目
self.active_items.append(item)
self.access_times[item_id] = current_time
logger.debug(f"工作记忆添加项目: {item_id}")
return True
async def retrieve(self, query: str, context: Dict[str, Any] = None) -> List[Dict[str, Any]]:
"""从工作记忆检索信息"""
current_time = time.time()
relevant_items = []
for item in self.active_items:
# 检查是否在注意力保持时间内
last_access = self.access_times.get(item["id"], 0)
if current_time - last_access > self.attention_span:
continue
# 计算相关性
relevance_score = await self._calculate_relevance(item, query, context)
if relevance_score > 0.3: # 相关性阈值
item_with_score = {
**item,
"relevance_score": relevance_score,
"memory_type": "working",
}
relevant_items.append(item_with_score)
# 更新访问时间
self.access_times[item["id"]] = current_time
# 按相关性排序
relevant_items.sort(key=lambda x: x["relevance_score"], reverse=True)
return relevant_items
async def _remove_item(self, item_id: str):
"""移除工作记忆项目"""
self.active_items = [
item for item in self.active_items
if item["id"] != item_id
]
self.access_times.pop(item_id, None)
logger.debug(f"工作记忆移除项目: {item_id}")
async def _calculate_relevance(
self,
item: Dict[str, Any],
query: str,
context: Dict[str, Any] = None
) -> float:
"""计算项目与查询的相关性"""
# 简化的相关性计算
# 实际可以使用语义相似度模型
item_text = str(item.get("content", ""))
query_lower = query.lower()
item_lower = item_text.lower()
# 关键词匹配
query_words = set(query_lower.split())
item_words = set(item_lower.split())
word_overlap = len(query_words & item_words)
total_words = len(query_words | item_words)
if total_words == 0:
return 0.0
keyword_relevance = word_overlap / total_words
# 上下文相关性
context_relevance = 0.5 # 简化处理
if context:
# 这里可以实现更复杂的上下文匹配
pass
# 时间相关性(最近的记忆更相关)
time_diff = time.time() - item.get("timestamp", 0)
time_relevance = max(0, 1 - time_diff / 3600) # 1小时内线性衰减
# 综合相关性
overall_relevance = (
keyword_relevance * 0.5 +
context_relevance * 0.3 +
time_relevance * 0.2
)
return overall_relevance
class MemoryConsolidationScheduler:
"""记忆整理调度器"""
def __init__(self):
self.consolidation_intervals = {
"immediate": 60, # 1分钟后立即整理
"short_term": 3600, # 1小时后短期整理
"daily": 86400, # 24小时后日常整理
"weekly": 604800, # 7天后周期整理
}
self.last_consolidation = {
interval: 0 for interval in self.consolidation_intervals.keys()
}
async def schedule_consolidation(self, memory_system: 'IntelligentMemorySystem'):
"""调度记忆整理任务"""
current_time = time.time()
for interval_type, interval_seconds in self.consolidation_intervals.items():
last_time = self.last_consolidation[interval_type]
if current_time - last_time >= interval_seconds:
# 执行对应类型的记忆整理
await self._perform_consolidation(memory_system, interval_type)
self.last_consolidation[interval_type] = current_time
async def _perform_consolidation(
self,
memory_system: 'IntelligentMemorySystem',
consolidation_type: str
):
"""执行记忆整理"""
logger.info(f"开始执行 {consolidation_type} 记忆整理")
if consolidation_type == "immediate":
# 立即整理:从感觉记忆提升到工作记忆
await self._immediate_consolidation(memory_system)
elif consolidation_type == "short_term":
# 短期整理:从工作记忆提升到短期记忆
await self._short_term_consolidation(memory_system)
elif consolidation_type == "daily":
# 日常整理:从短期记忆提升到长期记忆
await self._daily_consolidation(memory_system)
elif consolidation_type == "weekly":
# 周期整理:记忆压缩和重组
await self._weekly_consolidation(memory_system)
async def _daily_consolidation(self, memory_system: 'IntelligentMemorySystem'):
"""日常记忆整理"""
# 从短期记忆中选择重要记忆提升到长期记忆
short_term_memories = await memory_system.short_term_memory.get_all()
promotion_candidates = []
for memory in short_term_memories:
# 重新评估重要性
current_importance = await memory_system._evaluate_importance(memory)
access_frequency = memory.get("access_count", 0)
# 综合评分
promotion_score = current_importance * 0.7 + (access_frequency / 10) * 0.3
if promotion_score > 0.6:
promotion_candidates.append((memory, promotion_score))
# 按分数排序,提升最重要的记忆
promotion_candidates.sort(key=lambda x: x[1], reverse=True)
for memory, score in promotion_candidates[:20]: # 最多提升20个记忆
await memory_system.long_term_memory.store(memory)
await memory_system.short_term_memory.remove(memory["id"])
logger.debug(f"记忆提升到长期存储: {memory['id']} (分数: {score:.2f})")
4. 分层任务规划系统
4.1 HTN任务网络架构
# /autogpt_platform/backend/backend/blocks/task_planning.py
class HierarchicalTaskNetwork:
"""
分层任务网络 (HTN) 规划器
章的HTN算法实现
特性:
1. 递归任务分解
2. 方法选择和应用
3. 约束满足求解
4. 动态重规划
"""
def __init__(self):
self.domain_knowledge = TaskDomainKnowledge()
self.method_library = TaskMethodLibrary()
self.constraint_solver = ConstraintSolver()
async def plan_task_execution(
self,
high_level_task: str,
initial_state: Dict[str, Any],
resources: Dict[str, Any],
constraints: List[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
制定分层任务执行计划
HTN规划算法:
1. 任务分解:将复合任务分解为子任务
2. 方法选择:为每个任务选择合适的执行方法
3. 约束检查:验证计划的可行性
4. 优化调整:优化执行顺序和资源分配
参数:
high_level_task: 高层任务描述
initial_state: 初始状态
resources: 可用资源
constraints: 约束条件
返回:
分层执行计划
"""
logger.info(f"开始HTN任务规划: {high_level_task}")
planning_context = {
"task": high_level_task,
"state": initial_state.copy(),
"resources": resources,
"constraints": constraints or [],
"planning_depth": 0,
"max_depth": 10,
}
try:
# 递归任务分解
task_network = await self._recursive_task_decomposition(
high_level_task, planning_context
)
# 方法选择和绑定
method_bindings = await self._select_and_bind_methods(
task_network, planning_context
)
# 约束满足求解
constraint_solution = await self.constraint_solver.solve(
method_bindings, planning_context["constraints"]
)
if not constraint_solution["satisfiable"]:
raise PlanningException("约束条件无法满足,规划失败")
# 生成最终执行计划
execution_plan = await self._generate_execution_plan(
task_network, method_bindings, constraint_solution
)
# 计划优化
optimized_plan = await self._optimize_execution_plan(execution_plan)
return {
"success": True,
"task": high_level_task,
"task_network": task_network,
"execution_plan": optimized_plan,
"estimated_duration": optimized_plan["total_duration"],
"resource_requirements": optimized_plan["resource_summary"],
"planning_quality": await self._assess_plan_quality(optimized_plan),
}
except Exception as e:
logger.error(f"HTN任务规划失败: {e}")
return {
"success": False,
"error": str(e),
"partial_plan": planning_context.get("partial_plan"),
}
async def _recursive_task_decomposition(
self,
task: str,
context: Dict[str, Any],
current_depth: int = 0
) -> Dict[str, Any]:
"""
递归任务分解
分解策略:
1. 检查任务是否为原子任务
2. 查找适用的分解方法
3. 应用分解方法生成子任务
4. 递归分解子任务
"""
if current_depth >= context["max_depth"]:
# 达到最大深度,视为原子任务
return {
"task": task,
"type": "atomic",
"depth": current_depth,
"executable": True,
}
# 检查是否为原子任务
if await self.domain_knowledge.is_atomic_task(task):
return {
"task": task,
"type": "atomic",
"depth": current_depth,
"executable": True,
}
# 查找分解方法
decomposition_methods = await self.method_library.find_decomposition_methods(
task, context
)
if not decomposition_methods:
# 无法分解,视为原子任务
logger.warning(f"无法找到任务分解方法: {task}")
return {
"task": task,
"type": "atomic",
"depth": current_depth,
"executable": False, # 标记为不可执行
"reason": "无分解方法",
}
# 选择最佳分解方法
best_method = await self._select_best_decomposition_method(
decomposition_methods, context
)
# 应用分解方法
subtasks = await best_method.apply(task, context)
# 递归分解子任务
decomposed_subtasks = []
for subtask in subtasks:
subtask_decomposition = await self._recursive_task_decomposition(
subtask["task"],
{**context, "parent_task": task},
current_depth + 1
)
decomposed_subtasks.append(subtask_decomposition)
return {
"task": task,
"type": "composite",
"depth": current_depth,
"decomposition_method": best_method.name,
"subtasks": decomposed_subtasks,
"executable": all(
subtask.get("executable", False)
for subtask in decomposed_subtasks
),
}
async def _select_best_decomposition_method(
self,
methods: List['DecompositionMethod'],
context: Dict[str, Any]
) -> 'DecompositionMethod':
"""选择最佳分解方法"""
if len(methods) == 1:
return methods[0]
# 评估每个方法的适用性
method_scores = []
for method in methods:
# 评估方法的适用性
applicability = await method.evaluate_applicability(context)
# 评估方法的效率
efficiency = await method.estimate_efficiency(context)
# 评估方法的可靠性
reliability = await method.assess_reliability(context)
# 综合评分
total_score = (
applicability * 0.4 +
efficiency * 0.3 +
reliability * 0.3
)
method_scores.append((method, total_score))
# 选择得分最高的方法
best_method, best_score = max(method_scores, key=lambda x: x[1])
logger.debug(f"选择分解方法: {best_method.name} (得分: {best_score:.2f})")
return best_method
class TaskDomainKnowledge:
"""任务领域知识库"""
def __init__(self):
# 原子任务模式
self.atomic_task_patterns = {
r'发送.*邮件': "email_send",
r'下载.*文件': "file_download",
r'创建.*文件夹': "directory_create",
r'搜索.*信息': "web_search",
r'分析.*数据': "data_analysis",
}
# 任务复杂度模型
self.complexity_indicators = {
"high": ["分析", "研究", "设计", "创造"],
"medium": ["整理", "转换", "合并", "比较"],
"low": ["复制", "移动", "删除", "查看"],
}
async def is_atomic_task(self, task: str) -> bool:
"""判断是否为原子任务"""
import re
for pattern, task_type in self.atomic_task_patterns.items():
if re.search(pattern, task):
return True
# 基于复杂度判断
complexity = await self._assess_task_complexity(task)
return complexity < 3 # 复杂度小于3视为原子任务
async def _assess_task_complexity(self, task: str) -> int:
"""评估任务复杂度"""
task_lower = task.lower()
complexity_score = 1 # 基础复杂度
# 检查复杂度指示词
for level, indicators in self.complexity_indicators.items():
for indicator in indicators:
if indicator in task_lower:
if level == "high":
complexity_score += 3
elif level == "medium":
complexity_score += 2
else:
complexity_score += 1
break
# 检查任务长度(字数)
word_count = len(task.split())
if word_count > 20:
complexity_score += 2
elif word_count > 10:
complexity_score += 1
return min(10, complexity_score)
class DecompositionMethod:
"""任务分解方法基类"""
def __init__(self, name: str, description: str):
self.name = name
self.description = description
async def apply(self, task: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""应用分解方法"""
raise NotImplementedError("子类需要实现apply方法")
async def evaluate_applicability(self, context: Dict[str, Any]) -> float:
"""评估方法适用性"""
return 0.5 # 默认中等适用性
async def estimate_efficiency(self, context: Dict[str, Any]) -> float:
"""估算方法效率"""
return 0.5 # 默认中等效率
async def assess_reliability(self, context: Dict[str, Any]) -> float:
"""评估方法可靠性"""
return 0.5 # 默认中等可靠性
class FunctionalDecompositionMethod(DecompositionMethod):
"""功能性分解方法"""
def __init__(self):
super().__init__(
name="functional_decomposition",
description="按功能模块进行任务分解"
)
async def apply(self, task: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
功能性分解实现
将复杂任务按功能模块分解为独立的子任务
"""
# 使用LLM进行功能性分解
decomposition_prompt = f"""
请将以下任务按功能模块进行分解:
任务:{task}
分解原则:
1. 每个子任务应该对应一个独立的功能模块
2. 子任务之间应该相对独立,减少耦合
3. 每个子任务都应该有明确的输入和输出
4. 考虑功能的复用性和模块化
请输出3-7个子任务:
1. [子任务1] - 功能:[功能描述]
2. [子任务2] - 功能:[功能描述]
...
"""
# 这里需要实际的LLM调用
# 简化返回示例结果
return [
{
"task": f"{task} - 数据收集模块",
"function": "data_collection",
"dependencies": [],
"estimated_duration": 300,
},
{
"task": f"{task} - 数据处理模块",
"function": "data_processing",
"dependencies": ["data_collection"],
"estimated_duration": 600,
},
{
"task": f"{task} - 结果输出模块",
"function": "result_output",
"dependencies": ["data_processing"],
"estimated_duration": 200,
},
]
总结
AutoGPT AI Agent通过实现ReAct推理框架、多模态智能处理、分层记忆管理和HTN任务规划等核心技术,构建了接近人类认知水平的智能行为能力。结合章的研究成果,其核心技术优势包括:
核心技术突破
- ReAct推理框架:实现思考-行动-观察-反思的完整认知循环
- 多模态智能体:支持文本、图像、音频、视频的跨模态理解
- 分层记忆系统:模拟人类记忆机制的智能存储和检索
- HTN任务规划:递归分解和约束满足的智能规划算法
- 自适应学习:从经验中持续学习和策略优化
技术创新点
- 上下文感知决策:基于环境和历史的智能决策机制
- 注意力机制:模拟人类注意力的信息筛选和聚焦
- 元认知能力:对自身推理过程的监控和调整
- 跨模态融合:多种感知模态的协同理解和处理
- 动态重规划:根据执行结果实时调整策略
实践应用价值
这些核心技术不仅为AutoGPT平台提供了强大的智能基础,也为整个AI Agent领域的发展提供了宝贵的参考实现。通过深度整合大语言模型能力和传统AI规划算法,AutoGPT展现了下一代智能系统的技术路径和巨大潜力。
Agent技术的成功关键在于认知架构的合理设计、推理机制的高效实现,以及学习能力的持续增强。这种技术路径为构建真正智能化的AI系统奠定了重要基础。