AutoGPT平台框架使用手册

概述

AutoGPT平台是一个强大的AI智能体创建和运行系统,旨在帮助企业和开发者构建自动化的AI解决方案。本手册将详细介绍平台的架构、使用方法、API接口以及最佳实践。

目录

  1. 快速开始
  2. 平台架构概览
  3. 核心概念
  4. 开发环境搭建
  5. API接口详解
  6. 模块深度解析
  7. 实战经验与最佳实践

快速开始

系统要求

  • Docker 和 Docker Compose V2
  • Node.js 18+ (用于前端开发)
  • Python 3.11+ (用于后端开发)
  • PostgreSQL 14+ (数据库)
  • Redis 7+ (缓存和队列)

一键启动

# 1. 克隆仓库
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd AutoGPT/autogpt_platform

# 2. 配置环境变量
cp .env.default .env
# 编辑 .env 文件,配置必要的环境变量

# 3. 启动所有服务
docker compose up -d

# 4. 访问平台
# 前端: http://localhost:3000
# 后端API: http://localhost:8000
# API文档: http://localhost:8000/docs

验证安装

# 检查服务状态
docker compose ps

# 检查健康状态
curl http://localhost:8000/health

平台架构概览

整体架构图

graph TB
    subgraph "前端层 - Frontend Layer"
        UI[Next.js Web UI]
        Mobile[移动端应用]
    end
    
    subgraph "网关层 - Gateway Layer"
        LB[负载均衡器]
        Auth[认证中间件]
        RateLimit[限流中间件]
    end
    
    subgraph "应用层 - Application Layer"
        API[REST API Server]
        WS[WebSocket Server]
        External[External API]
    end
    
    subgraph "业务层 - Business Layer"
        AgentEngine[智能体引擎]
        BlockSystem[Block系统]
        Workflow[工作流引擎]
        Store[应用商店]
        Library[智能体库]
    end
    
    subgraph "执行层 - Execution Layer"
        Executor[执行引擎]
        Scheduler[调度器]
        Queue[消息队列]
    end
    
    subgraph "数据层 - Data Layer"
        DB[(PostgreSQL)]
        Cache[(Redis)]
        Storage[(文件存储)]
        Vector[(向量数据库)]
    end
    
    subgraph "基础设施层 - Infrastructure Layer"
        Monitor[监控系统]
        Log[日志系统]
        Security[安全系统]
    end
    
    UI --> LB
    Mobile --> LB
    LB --> Auth
    Auth --> RateLimit
    RateLimit --> API
    RateLimit --> WS
    RateLimit --> External
    
    API --> AgentEngine
    API --> BlockSystem
    API --> Store
    API --> Library
    WS --> Workflow
    
    AgentEngine --> Executor
    Workflow --> Scheduler
    Scheduler --> Queue
    
    Executor --> DB
    Executor --> Cache
    AgentEngine --> Vector
    Store --> Storage
    
    API --> Monitor
    Executor --> Log
    Auth --> Security

技术栈

后端技术栈

  • 框架: FastAPI (Python)
  • 数据库: PostgreSQL + Prisma ORM
  • 缓存: Redis
  • 消息队列: RabbitMQ
  • 认证: JWT + Supabase
  • 监控: Prometheus + Grafana
  • 日志: 结构化日志 + 云日志集成

前端技术栈

  • 框架: Next.js 14 (App Router)
  • UI库: React + Radix UI + Tailwind CSS
  • 状态管理: React Hooks + Supabase Client
  • 图形编辑: @xyflow/react
  • 特性开关: LaunchDarkly

基础设施

  • 容器化: Docker + Docker Compose
  • CI/CD: GitHub Actions
  • 云服务: Google Cloud Platform
  • 安全: ClamAV病毒扫描

核心概念

1. 智能体 (Agent)

智能体是AutoGPT平台的核心概念,代表一个可执行的AI工作流。

# 智能体数据模型
class AgentGraph:
    id: str                    # 智能体唯一标识
    version: int              # 版本号
    name: str                 # 智能体名称
    description: str          # 描述信息
    instructions: str         # 执行指令
    nodes: List[AgentNode]    # 节点列表
    is_active: bool          # 是否激活
    user_id: str             # 创建者ID

2. 节点 (Node/Block)

节点是智能体工作流中的基本执行单元,每个节点执行特定的功能。

# 节点基类
class Block:
    """
    Block是所有节点的基类,定义了节点的基本接口
    """
    
    class Input(BaseModel):
        """输入数据模型"""
        pass
    
    class Output(BaseModel):
        """输出数据模型"""
        pass
    
    def __init__(self):
        self.id = str(uuid.uuid4())
    
    @classmethod
    def get_block_type(cls) -> BlockType:
        """获取节点类型"""
        raise NotImplementedError
    
    def run(self, input_data: Input, **kwargs) -> BlockOutput:
        """执行节点逻辑"""
        raise NotImplementedError

3. 工作流 (Workflow)

工作流定义了节点之间的连接关系和数据流向。

# 工作流执行引擎
class WorkflowEngine:
    """
    工作流执行引擎,负责协调节点执行
    """
    
    def __init__(self, graph: AgentGraph):
        self.graph = graph
        self.execution_context = {}
    
    async def execute(self) -> ExecutionResult:
        """执行工作流"""
        try:
            # 1. 验证工作流
            self._validate_workflow()
            
            # 2. 初始化执行上下文
            self._initialize_context()
            
            # 3. 按拓扑顺序执行节点
            result = await self._execute_nodes()
            
            return ExecutionResult(
                success=True,
                output=result,
                execution_id=self.execution_id
            )
        except Exception as e:
            return ExecutionResult(
                success=False,
                error=str(e),
                execution_id=self.execution_id
            )

开发环境搭建

后端开发环境

# 1. 进入后端目录
cd autogpt_platform/backend

# 2. 安装Poetry (Python包管理器)
curl -sSL https://install.python-poetry.org | python3 -

# 3. 安装依赖
poetry install

# 4. 激活虚拟环境
poetry shell

# 5. 配置数据库
cp .env.default .env
# 编辑数据库连接配置

# 6. 运行数据库迁移
poetry run prisma migrate dev

# 7. 启动开发服务器
poetry run python -m backend.app

前端开发环境

# 1. 进入前端目录
cd autogpt_platform/frontend

# 2. 安装依赖
pnpm install

# 3. 配置环境变量
cp .env.default .env.local
# 编辑API端点配置

# 4. 启动开发服务器
pnpm dev

# 5. 访问开发环境
# http://localhost:3000

开发工具配置

VS Code 配置

// .vscode/settings.json
{
  "python.defaultInterpreterPath": "./backend/.venv/bin/python",
  "python.linting.enabled": true,
  "python.linting.pylintEnabled": false,
  "python.linting.flake8Enabled": true,
  "python.formatting.provider": "black",
  "typescript.preferences.importModuleSpecifier": "relative",
  "editor.formatOnSave": true,
  "editor.codeActionsOnSave": {
    "source.organizeImports": true
  }
}

代码质量工具

# Python代码格式化和检查
poetry run black .
poetry run flake8 .
poetry run mypy .

# 前端代码格式化和检查
pnpm lint
pnpm format
pnpm type-check

API接口详解

认证系统

JWT认证流程

# 认证中间件实现
from autogpt_libs.auth import requires_user, get_jwt_payload

@app.post("/api/v1/auth/user")
async def get_or_create_user_route(
    user_data: dict = Security(get_jwt_payload)
):
    """
    获取或创建用户
    
    功能:
    1. 验证JWT令牌
    2. 提取用户信息
    3. 创建或更新用户记录
    
    返回:
    - 用户信息对象
    """
    user = await get_or_create_user(user_data)
    return user.model_dump()

# 使用认证装饰器保护端点
@app.get("/api/v1/protected-endpoint")
async def protected_endpoint(
    user: User = Depends(requires_user)
):
    """受保护的端点,需要用户认证"""
    return {"message": f"Hello, {user.email}!"}

智能体管理API

创建智能体

@v1_router.post("/graphs")
async def create_agent_graph(
    create_graph: CreateGraph,
    user_id: str = Security(get_user_id),
) -> Graph:
    """
    创建新的智能体图
    
    参数:
    - create_graph: 智能体创建请求
    - user_id: 用户ID (从JWT中提取)
    
    返回:
    - 创建的智能体图对象
    """
    try:
        # 1. 验证输入数据
        if not create_graph.name:
            raise ValueError("智能体名称不能为空")
        
        # 2. 创建智能体图
        graph_data = {
            "name": create_graph.name,
            "description": create_graph.description,
            "user_id": user_id,
            "nodes": [],
            "is_active": True
        }
        
        # 3. 保存到数据库
        graph = await AgentGraphDB.create_graph(graph_data)
        
        # 4. 记录审计日志
        logger.info(f"用户 {user_id} 创建智能体: {graph.id}")
        
        return graph
        
    except Exception as e:
        logger.error(f"创建智能体失败: {e}")
        raise HTTPException(
            status_code=500,
            detail="创建智能体失败"
        )

执行智能体

@v1_router.post("/graphs/{graph_id}/executions")
async def execute_agent_graph(
    graph_id: str,
    execution_request: ExecutionRequest,
    user_id: str = Security(get_user_id),
) -> ExecutionResponse:
    """
    执行智能体图
    
    参数:
    - graph_id: 智能体图ID
    - execution_request: 执行请求参数
    - user_id: 用户ID
    
    返回:
    - 执行结果
    """
    try:
        # 1. 验证权限
        graph = await AgentGraphDB.get_graph(graph_id, user_id)
        if not graph:
            raise HTTPException(404, "智能体不存在")
        
        # 2. 验证智能体状态
        if not graph.is_active:
            raise HTTPException(400, "智能体未激活")
        
        # 3. 创建执行记录
        execution = await ExecutionDB.create_execution(
            graph_id=graph_id,
            user_id=user_id,
            input_data=execution_request.input_data
        )
        
        # 4. 提交到执行队列
        await ExecutionQueue.submit_execution(execution.id)
        
        # 5. 返回执行ID
        return ExecutionResponse(
            execution_id=execution.id,
            status="QUEUED",
            message="智能体已提交执行"
        )
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"执行智能体失败: {e}")
        raise HTTPException(500, "执行智能体失败")

WebSocket实时通信

# WebSocket连接管理
class WebSocketManager:
    """WebSocket连接管理器"""
    
    def __init__(self):
        self.active_connections: Dict[str, WebSocket] = {}
        self.user_connections: Dict[str, Set[str]] = {}
    
    async def connect(self, websocket: WebSocket, user_id: str):
        """建立WebSocket连接"""
        await websocket.accept()
        
        connection_id = str(uuid.uuid4())
        self.active_connections[connection_id] = websocket
        
        if user_id not in self.user_connections:
            self.user_connections[user_id] = set()
        self.user_connections[user_id].add(connection_id)
        
        logger.info(f"用户 {user_id} 建立WebSocket连接: {connection_id}")
        return connection_id
    
    async def disconnect(self, connection_id: str, user_id: str):
        """断开WebSocket连接"""
        if connection_id in self.active_connections:
            del self.active_connections[connection_id]
        
        if user_id in self.user_connections:
            self.user_connections[user_id].discard(connection_id)
            if not self.user_connections[user_id]:
                del self.user_connections[user_id]
        
        logger.info(f"WebSocket连接已断开: {connection_id}")
    
    async def send_to_user(self, user_id: str, message: dict):
        """向特定用户发送消息"""
        if user_id not in self.user_connections:
            return
        
        disconnected = []
        for connection_id in self.user_connections[user_id]:
            websocket = self.active_connections.get(connection_id)
            if websocket:
                try:
                    await websocket.send_json(message)
                except ConnectionClosedError:
                    disconnected.append(connection_id)
        
        # 清理断开的连接
        for connection_id in disconnected:
            await self.disconnect(connection_id, user_id)

# WebSocket端点
@websocket_router.websocket("/ws/{user_id}")
async def websocket_endpoint(
    websocket: WebSocket,
    user_id: str,
    token: str = Query(...)
):
    """WebSocket端点,用于实时通信"""
    try:
        # 1. 验证JWT令牌
        payload = parse_jwt_token(token)
        if payload.get("sub") != user_id:
            await websocket.close(code=1008, reason="无效的用户ID")
            return
        
        # 2. 建立连接
        connection_id = await ws_manager.connect(websocket, user_id)
        
        try:
            while True:
                # 3. 接收客户端消息
                data = await websocket.receive_json()
                
                # 4. 处理消息
                await handle_websocket_message(user_id, data)
                
        except WebSocketDisconnect:
            pass
        finally:
            # 5. 清理连接
            await ws_manager.disconnect(connection_id, user_id)
            
    except Exception as e:
        logger.error(f"WebSocket连接错误: {e}")
        await websocket.close(code=1011, reason="服务器错误")

限流和安全

# 限流中间件
from autogpt_libs.rate_limit import rate_limit_middleware, RateLimitConfig

# 配置限流策略
rate_limit_config = RateLimitConfig(
    requests_per_minute=60,  # 每分钟60次请求
    exempt_paths=[           # 豁免路径
        r"^/health$",
        r"^/docs$",
        r"^/static/"
    ]
)

@app.middleware("http")
async def rate_limit_entry(request: Request, call_next):
    """限流中间件入口"""
    return await rate_limit_middleware(request, call_next, rate_limit_config)

# 安全头中间件
class SecurityHeadersMiddleware:
    """安全头中间件"""
    
    def __init__(self, app):
        self.app = app
    
    async def __call__(self, scope, receive, send):
        if scope["type"] == "http":
            # 添加安全响应头
            async def send_wrapper(message):
                if message["type"] == "http.response.start":
                    headers = dict(message.get("headers", []))
                    
                    # 安全头配置
                    security_headers = {
                        b"x-content-type-options": b"nosniff",
                        b"x-frame-options": b"DENY",
                        b"x-xss-protection": b"1; mode=block",
                        b"strict-transport-security": b"max-age=31536000; includeSubDomains",
                        b"content-security-policy": b"default-src 'self'",
                        b"referrer-policy": b"strict-origin-when-cross-origin"
                    }
                    
                    headers.update(security_headers)
                    message["headers"] = list(headers.items())
                
                await send(message)
            
            await self.app(scope, receive, send_wrapper)
        else:
            await self.app(scope, receive, send)

模块深度解析

1. 执行引擎模块

架构图

graph TB
    subgraph "执行引擎架构"
        subgraph "调度层"
            Scheduler[调度器]
            Queue[任务队列]
            Priority[优先级管理]
        end
        
        subgraph "执行层"
            Executor[执行器]
            Worker[工作进程]
            Monitor[执行监控]
        end
        
        subgraph "存储层"
            ExecDB[执行记录]
            ResultCache[结果缓存]
            LogStore[日志存储]
        end
    end
    
    Scheduler --> Queue
    Queue --> Priority
    Priority --> Executor
    Executor --> Worker
    Worker --> Monitor
    
    Executor --> ExecDB
    Worker --> ResultCache
    Monitor --> LogStore

核心实现

# 执行管理器
class ExecutionManager(AppService):
    """
    执行管理器 - 负责智能体的执行调度和管理
    
    主要功能:
    1. 接收执行请求
    2. 调度执行任务
    3. 监控执行状态
    4. 管理执行结果
    """
    
    def __init__(self):
        super().__init__(port=8001)
        self.execution_queue = asyncio.Queue()
        self.active_executions: Dict[str, ExecutionContext] = {}
        self.worker_pool = []
    
    async def run_service(self):
        """运行执行服务"""
        # 启动工作进程池
        for i in range(self.get_worker_count()):
            worker = ExecutionWorker(f"worker-{i}")
            self.worker_pool.append(worker)
            asyncio.create_task(worker.start())
        
        # 启动调度循环
        await self._schedule_loop()
    
    async def _schedule_loop(self):
        """调度循环"""
        while True:
            try:
                # 从队列获取执行任务
                execution_request = await self.execution_queue.get()
                
                # 分配给可用的工作进程
                worker = await self._get_available_worker()
                if worker:
                    await worker.execute(execution_request)
                else:
                    # 重新排队
                    await self.execution_queue.put(execution_request)
                    await asyncio.sleep(1)
                    
            except Exception as e:
                logger.error(f"调度循环错误: {e}")
                await asyncio.sleep(5)
    
    @expose
    async def submit_execution(self, request: ExecutionRequest) -> ExecutionResponse:
        """
        提交执行请求
        
        参数:
        - request: 执行请求对象
        
        返回:
        - 执行响应对象
        """
        try:
            # 1. 验证请求
            await self._validate_execution_request(request)
            
            # 2. 创建执行上下文
            context = ExecutionContext(
                execution_id=request.execution_id,
                graph_id=request.graph_id,
                user_id=request.user_id,
                input_data=request.input_data,
                created_at=datetime.utcnow()
            )
            
            # 3. 加入执行队列
            await self.execution_queue.put(context)
            self.active_executions[request.execution_id] = context
            
            # 4. 记录执行日志
            logger.info(f"执行请求已提交: {request.execution_id}")
            
            return ExecutionResponse(
                execution_id=request.execution_id,
                status=ExecutionStatus.QUEUED,
                message="执行请求已提交到队列"
            )
            
        except Exception as e:
            logger.error(f"提交执行请求失败: {e}")
            raise
    
    @expose
    async def get_execution_status(self, execution_id: str) -> ExecutionStatusResponse:
        """
        获取执行状态
        
        参数:
        - execution_id: 执行ID
        
        返回:
        - 执行状态响应
        """
        if execution_id in self.active_executions:
            context = self.active_executions[execution_id]
            return ExecutionStatusResponse(
                execution_id=execution_id,
                status=context.status,
                progress=context.progress,
                current_node=context.current_node,
                output=context.output,
                error=context.error
            )
        else:
            # 从数据库查询历史执行记录
            execution = await ExecutionDB.get_execution(execution_id)
            if execution:
                return ExecutionStatusResponse.from_db_record(execution)
            else:
                raise NotFoundError(f"执行记录不存在: {execution_id}")

# 执行工作进程
class ExecutionWorker:
    """
    执行工作进程 - 负责具体的智能体执行
    """
    
    def __init__(self, worker_id: str):
        self.worker_id = worker_id
        self.is_busy = False
        self.current_execution: Optional[ExecutionContext] = None
    
    async def start(self):
        """启动工作进程"""
        logger.info(f"执行工作进程启动: {self.worker_id}")
        
    async def execute(self, context: ExecutionContext):
        """
        执行智能体
        
        参数:
        - context: 执行上下文
        """
        self.is_busy = True
        self.current_execution = context
        
        try:
            # 1. 更新执行状态
            context.status = ExecutionStatus.RUNNING
            context.started_at = datetime.utcnow()
            
            # 2. 加载智能体图
            graph = await AgentGraphDB.get_graph(context.graph_id)
            if not graph:
                raise ValueError(f"智能体图不存在: {context.graph_id}")
            
            # 3. 创建执行引擎
            engine = WorkflowEngine(graph, context)
            
            # 4. 执行工作流
            result = await engine.execute()
            
            # 5. 更新执行结果
            context.status = ExecutionStatus.COMPLETED if result.success else ExecutionStatus.FAILED
            context.output = result.output
            context.error = result.error
            context.completed_at = datetime.utcnow()
            
            # 6. 保存执行记录
            await ExecutionDB.update_execution(context)
            
            # 7. 发送WebSocket通知
            await self._notify_execution_complete(context)
            
        except Exception as e:
            # 处理执行异常
            context.status = ExecutionStatus.FAILED
            context.error = str(e)
            context.completed_at = datetime.utcnow()
            
            logger.error(f"执行失败 {context.execution_id}: {e}")
            
        finally:
            self.is_busy = False
            self.current_execution = None
    
    async def _notify_execution_complete(self, context: ExecutionContext):
        """通知执行完成"""
        message = {
            "type": "execution_complete",
            "execution_id": context.execution_id,
            "status": context.status.value,
            "output": context.output,
            "error": context.error
        }
        
        # 通过WebSocket发送通知
        await ws_manager.send_to_user(context.user_id, message)

2. Block系统模块

Block基类实现

# Block基类定义
class Block(ABC):
    """
    Block基类 - 所有功能块的基础类
    
    设计原则:
    1. 单一职责: 每个Block只负责一个特定功能
    2. 可组合性: Block可以自由组合形成复杂工作流
    3. 类型安全: 使用Pydantic进行输入输出验证
    4. 可测试性: 每个Block都可以独立测试
    """
    
    class Input(BaseModel):
        """输入数据模型 - 子类必须重写"""
        pass
    
    class Output(BaseModel):
        """输出数据模型 - 子类必须重写"""
        pass
    
    def __init__(self):
        self.id = str(uuid.uuid4())
        self.execution_count = 0
        self.last_execution_time: Optional[datetime] = None
    
    @classmethod
    @abstractmethod
    def get_block_type(cls) -> BlockType:
        """获取Block类型"""
        pass
    
    @classmethod
    def get_block_category(cls) -> BlockCategory:
        """获取Block分类"""
        return BlockCategory.BASIC
    
    @classmethod
    def get_block_description(cls) -> str:
        """获取Block描述"""
        return cls.__doc__ or "无描述"
    
    @classmethod
    def get_input_schema(cls) -> Dict[str, Any]:
        """获取输入数据模式"""
        return cls.Input.model_json_schema()
    
    @classmethod
    def get_output_schema(cls) -> Dict[str, Any]:
        """获取输出数据模式"""
        return cls.Output.model_json_schema()
    
    def run(
        self,
        input_data: Input,
        **kwargs
    ) -> BlockOutput:
        """
        执行Block逻辑
        
        参数:
        - input_data: 输入数据
        - **kwargs: 额外参数 (user_id, credentials等)
        
        返回:
        - BlockOutput: 执行结果
        """
        try:
            # 1. 记录执行信息
            self.execution_count += 1
            self.last_execution_time = datetime.utcnow()
            
            # 2. 验证输入数据
            validated_input = self._validate_input(input_data)
            
            # 3. 执行核心逻辑
            result = self._execute(validated_input, **kwargs)
            
            # 4. 验证输出数据
            validated_output = self._validate_output(result)
            
            # 5. 返回执行结果
            return BlockOutput(
                id=self.id,
                block_type=self.get_block_type(),
                output_data=validated_output,
                execution_time=datetime.utcnow() - self.last_execution_time,
                success=True
            )
            
        except Exception as e:
            # 处理执行异常
            logger.error(f"Block执行失败 {self.id}: {e}")
            return BlockOutput(
                id=self.id,
                block_type=self.get_block_type(),
                error=str(e),
                execution_time=datetime.utcnow() - self.last_execution_time,
                success=False
            )
    
    @abstractmethod
    def _execute(self, input_data: Input, **kwargs) -> Output:
        """
        执行核心逻辑 - 子类必须实现
        
        参数:
        - input_data: 验证后的输入数据
        - **kwargs: 额外参数
        
        返回:
        - Output: 执行结果
        """
        pass
    
    def _validate_input(self, input_data: Any) -> Input:
        """验证输入数据"""
        if isinstance(input_data, dict):
            return self.Input(**input_data)
        elif isinstance(input_data, self.Input):
            return input_data
        else:
            raise ValueError(f"无效的输入数据类型: {type(input_data)}")
    
    def _validate_output(self, output_data: Any) -> Output:
        """验证输出数据"""
        if isinstance(output_data, dict):
            return self.Output(**output_data)
        elif isinstance(output_data, self.Output):
            return output_data
        else:
            raise ValueError(f"无效的输出数据类型: {type(output_data)}")

# 具体Block实现示例
class TextProcessingBlock(Block):
    """
    文本处理Block - 提供基础的文本处理功能
    """
    
    class Input(BaseModel):
        text: str = Field(..., description="要处理的文本")
        operation: str = Field(..., description="处理操作: upper, lower, strip, reverse")
        
    class Output(BaseModel):
        processed_text: str = Field(..., description="处理后的文本")
        original_length: int = Field(..., description="原始文本长度")
        processed_length: int = Field(..., description="处理后文本长度")
    
    @classmethod
    def get_block_type(cls) -> BlockType:
        return BlockType.TEXT_PROCESSING
    
    @classmethod
    def get_block_category(cls) -> BlockCategory:
        return BlockCategory.TEXT
    
    def _execute(self, input_data: Input, **kwargs) -> Output:
        """执行文本处理逻辑"""
        text = input_data.text
        operation = input_data.operation.lower()
        
        # 执行文本处理操作
        if operation == "upper":
            processed_text = text.upper()
        elif operation == "lower":
            processed_text = text.lower()
        elif operation == "strip":
            processed_text = text.strip()
        elif operation == "reverse":
            processed_text = text[::-1]
        else:
            raise ValueError(f"不支持的操作: {operation}")
        
        return self.Output(
            processed_text=processed_text,
            original_length=len(text),
            processed_length=len(processed_text)
        )

# LLM Block实现
class LLMBlock(Block):
    """
    大语言模型Block - 提供AI文本生成功能
    """
    
    class Input(BaseModel):
        prompt: str = Field(..., description="输入提示")
        model: str = Field(default="gpt-3.5-turbo", description="使用的模型")
        max_tokens: int = Field(default=1000, description="最大token数")
        temperature: float = Field(default=0.7, description="温度参数")
        
    class Output(BaseModel):
        response: str = Field(..., description="AI生成的响应")
        token_usage: Dict[str, int] = Field(..., description="Token使用情况")
        model_used: str = Field(..., description="实际使用的模型")
    
    @classmethod
    def get_block_type(cls) -> BlockType:
        return BlockType.LLM
    
    @classmethod
    def get_block_category(cls) -> BlockCategory:
        return BlockCategory.AI
    
    def _execute(self, input_data: Input, **kwargs) -> Output:
        """执行LLM推理"""
        # 获取用户凭据
        user_id = kwargs.get("user_id")
        credentials = kwargs.get("credentials")
        
        if not credentials:
            raise ValueError("缺少API凭据")
        
        # 调用LLM API
        llm_client = self._get_llm_client(credentials)
        
        try:
            response = llm_client.chat.completions.create(
                model=input_data.model,
                messages=[
                    {"role": "user", "content": input_data.prompt}
                ],
                max_tokens=input_data.max_tokens,
                temperature=input_data.temperature
            )
            
            return self.Output(
                response=response.choices[0].message.content,
                token_usage={
                    "prompt_tokens": response.usage.prompt_tokens,
                    "completion_tokens": response.usage.completion_tokens,
                    "total_tokens": response.usage.total_tokens
                },
                model_used=response.model
            )
            
        except Exception as e:
            raise RuntimeError(f"LLM调用失败: {e}")
    
    def _get_llm_client(self, credentials):
        """获取LLM客户端"""
        # 根据凭据类型创建相应的客户端
        if credentials.provider == "openai":
            import openai
            return openai.OpenAI(api_key=credentials.api_key)
        else:
            raise ValueError(f"不支持的LLM提供商: {credentials.provider}")

3. 应用商店模块

商店API实现

# 应用商店路由
@store_router.get("/agents")
async def get_store_agents(
    featured: bool = False,
    creator: Optional[str] = None,
    sorted_by: Optional[str] = None,
    search_query: Optional[str] = None,
    category: Optional[str] = None,
    page: int = Query(1, ge=1),
    page_size: int = Query(20, ge=1, le=100),
) -> PaginatedResponse[StoreAgent]:
    """
    获取应用商店智能体列表
    
    参数:
    - featured: 是否只显示精选智能体
    - creator: 创建者筛选
    - sorted_by: 排序方式 (popular, recent, rating)
    - search_query: 搜索关键词
    - category: 分类筛选
    - page: 页码
    - page_size: 每页大小
    
    返回:
    - 分页的智能体列表
    """
    try:
        # 1. 构建查询条件
        query_params = StoreQueryParams(
            featured=featured,
            creator=creator,
            sorted_by=sorted_by,
            search_query=search_query,
            category=category,
            page=page,
            page_size=page_size
        )
        
        # 2. 从缓存获取数据
        cache_key = f"store_agents:{hash(str(query_params))}"
        cached_result = await redis_client.get(cache_key)
        
        if cached_result:
            return PaginatedResponse.parse_raw(cached_result)
        
        # 3. 查询数据库
        agents, total_count = await StoreDB.get_agents(query_params)
        
        # 4. 构建响应
        response = PaginatedResponse(
            items=agents,
            total=total_count,
            page=page,
            page_size=page_size,
            total_pages=(total_count + page_size - 1) // page_size
        )
        
        # 5. 缓存结果
        await redis_client.setex(
            cache_key,
            300,  # 5分钟缓存
            response.json()
        )
        
        return response
        
    except Exception as e:
        logger.error(f"获取商店智能体失败: {e}")
        raise HTTPException(500, "获取智能体列表失败")

@store_router.post("/submissions")
async def submit_agent_to_store(
    submission: StoreSubmission,
    user_id: str = Security(get_user_id),
) -> SubmissionResponse:
    """
    提交智能体到应用商店
    
    参数:
    - submission: 提交数据
    - user_id: 用户ID
    
    返回:
    - 提交结果
    """
    try:
        # 1. 验证用户权限
        user_profile = await StoreDB.get_user_profile(user_id)
        if not user_profile or not user_profile.can_submit:
            raise HTTPException(403, "没有提交权限")
        
        # 2. 验证智能体
        graph = await AgentGraphDB.get_graph(submission.graph_id, user_id)
        if not graph:
            raise HTTPException(404, "智能体不存在")
        
        # 3. 检查重复提交
        existing_submission = await StoreDB.get_submission_by_graph(
            submission.graph_id
        )
        if existing_submission:
            raise HTTPException(409, "智能体已提交")
        
        # 4. 创建提交记录
        submission_record = await StoreDB.create_submission(
            graph_id=submission.graph_id,
            user_id=user_id,
            title=submission.title,
            description=submission.description,
            category=submission.category,
            tags=submission.tags,
            media_urls=submission.media_urls
        )
        
        # 5. 触发审核流程
        await ReviewQueue.submit_for_review(submission_record.id)
        
        # 6. 发送通知
        await NotificationManager.send_notification(
            user_id=user_id,
            type="submission_received",
            data={
                "submission_id": submission_record.id,
                "title": submission.title
            }
        )
        
        return SubmissionResponse(
            submission_id=submission_record.id,
            status="PENDING_REVIEW",
            message="智能体已提交审核"
        )
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"提交智能体失败: {e}")
        raise HTTPException(500, "提交失败")

# 商店数据库操作
class StoreDB:
    """应用商店数据库操作类"""
    
    @staticmethod
    async def get_agents(
        query_params: StoreQueryParams
    ) -> Tuple[List[StoreAgent], int]:
        """获取智能体列表"""
        
        # 构建查询条件
        where_conditions = []
        
        if query_params.featured:
            where_conditions.append("featured = true")
        
        if query_params.creator:
            where_conditions.append("creator_id = %s")
        
        if query_params.category:
            where_conditions.append("category = %s")
        
        if query_params.search_query:
            where_conditions.append(
                "(title ILIKE %s OR description ILIKE %s)"
            )
        
        # 构建排序条件
        order_by = "created_at DESC"  # 默认按创建时间排序
        
        if query_params.sorted_by == "popular":
            order_by = "download_count DESC, rating DESC"
        elif query_params.sorted_by == "rating":
            order_by = "rating DESC, review_count DESC"
        elif query_params.sorted_by == "recent":
            order_by = "updated_at DESC"
        
        # 执行查询
        query = f"""
            SELECT 
                sl.*,
                ag.name,
                ag.description,
                u.email as creator_email,
                up.name as creator_name,
                up.avatar_url as creator_avatar
            FROM store_listings sl
            JOIN agent_graphs ag ON sl.graph_id = ag.id
            JOIN users u ON sl.creator_id = u.id
            LEFT JOIN user_profiles up ON u.id = up.user_id
            WHERE sl.status = 'APPROVED'
            {' AND ' + ' AND '.join(where_conditions) if where_conditions else ''}
            ORDER BY {order_by}
            LIMIT %s OFFSET %s
        """
        
        # 查询参数
        params = []
        if query_params.creator:
            params.append(query_params.creator)
        if query_params.category:
            params.append(query_params.category)
        if query_params.search_query:
            search_pattern = f"%{query_params.search_query}%"
            params.extend([search_pattern, search_pattern])
        
        params.extend([
            query_params.page_size,
            (query_params.page - 1) * query_params.page_size
        ])
        
        # 执行查询
        results = await database.fetch_all(query, params)
        
        # 获取总数
        count_query = f"""
            SELECT COUNT(*)
            FROM store_listings sl
            WHERE sl.status = 'APPROVED'
            {' AND ' + ' AND '.join(where_conditions) if where_conditions else ''}
        """
        
        count_params = params[:-2]  # 移除LIMIT和OFFSET参数
        total_count = await database.fetch_val(count_query, count_params)
        
        # 转换为模型对象
        agents = [StoreAgent.from_db_record(record) for record in results]
        
        return agents, total_count

实战经验与最佳实践

1. 性能优化

数据库优化

# 数据库连接池配置
DATABASE_CONFIG = {
    "url": "postgresql://user:pass@localhost/autogpt",
    "min_size": 10,      # 最小连接数
    "max_size": 100,     # 最大连接数
    "max_queries": 50000, # 每个连接最大查询数
    "max_inactive_connection_lifetime": 300,  # 连接最大空闲时间
}

# 查询优化示例
class OptimizedQueries:
    """优化的数据库查询"""
    
    @staticmethod
    async def get_user_agents_with_stats(user_id: str) -> List[AgentWithStats]:
        """
        获取用户智能体及统计信息
        
        优化点:
        1. 使用JOIN减少查询次数
        2. 添加适当的索引
        3. 使用子查询预聚合数据
        """
        query = """
            SELECT 
                ag.*,
                COALESCE(exec_stats.total_executions, 0) as total_executions,
                COALESCE(exec_stats.success_rate, 0) as success_rate,
                COALESCE(exec_stats.avg_duration, 0) as avg_duration
            FROM agent_graphs ag
            LEFT JOIN (
                SELECT 
                    graph_id,
                    COUNT(*) as total_executions,
                    AVG(CASE WHEN status = 'COMPLETED' THEN 1.0 ELSE 0.0 END) as success_rate,
                    AVG(EXTRACT(EPOCH FROM (completed_at - started_at))) as avg_duration
                FROM agent_graph_executions
                WHERE created_at >= NOW() - INTERVAL '30 days'
                GROUP BY graph_id
            ) exec_stats ON ag.id = exec_stats.graph_id
            WHERE ag.user_id = $1 AND ag.is_active = true
            ORDER BY ag.updated_at DESC
        """
        
        results = await database.fetch_all(query, [user_id])
        return [AgentWithStats.from_db_record(record) for record in results]

# 缓存策略
class CacheManager:
    """缓存管理器"""
    
    def __init__(self, redis_client):
        self.redis = redis_client
        self.default_ttl = 300  # 5分钟
    
    async def get_or_set(
        self,
        key: str,
        fetch_func: Callable,
        ttl: Optional[int] = None
    ) -> Any:
        """获取缓存或设置缓存"""
        # 尝试从缓存获取
        cached_value = await self.redis.get(key)
        if cached_value:
            return json.loads(cached_value)
        
        # 缓存未命中,执行获取函数
        value = await fetch_func()
        
        # 设置缓存
        await self.redis.setex(
            key,
            ttl or self.default_ttl,
            json.dumps(value, default=str)
        )
        
        return value
    
    async def invalidate_pattern(self, pattern: str):
        """批量删除匹配模式的缓存"""
        keys = await self.redis.keys(pattern)
        if keys:
            await self.redis.delete(*keys)

异步处理优化

# 批量处理优化
class BatchProcessor:
    """批量处理器"""
    
    def __init__(self, batch_size: int = 100, flush_interval: float = 5.0):
        self.batch_size = batch_size
        self.flush_interval = flush_interval
        self.batch: List[Any] = []
        self.last_flush = time.time()
    
    async def add_item(self, item: Any):
        """添加项目到批次"""
        self.batch.append(item)
        
        # 检查是否需要刷新
        if (len(self.batch) >= self.batch_size or 
            time.time() - self.last_flush >= self.flush_interval):
            await self.flush()
    
    async def flush(self):
        """刷新批次"""
        if not self.batch:
            return
        
        try:
            await self._process_batch(self.batch.copy())
        finally:
            self.batch.clear()
            self.last_flush = time.time()
    
    async def _process_batch(self, items: List[Any]):
        """处理批次 - 子类实现"""
        raise NotImplementedError

# 并发控制
class ConcurrencyLimiter:
    """并发限制器"""
    
    def __init__(self, max_concurrent: int = 10):
        self.semaphore = asyncio.Semaphore(max_concurrent)
        self.active_tasks: Set[asyncio.Task] = set()
    
    async def run_with_limit(self, coro):
        """在并发限制下运行协程"""
        async with self.semaphore:
            task = asyncio.create_task(coro)
            self.active_tasks.add(task)
            
            try:
                return await task
            finally:
                self.active_tasks.discard(task)
    
    async def wait_all(self):
        """等待所有任务完成"""
        if self.active_tasks:
            await asyncio.gather(*self.active_tasks, return_exceptions=True)

2. 错误处理和监控

# 统一错误处理
class ErrorHandler:
    """统一错误处理器"""
    
    @staticmethod
    def handle_database_error(e: Exception) -> HTTPException:
        """处理数据库错误"""
        if isinstance(e, IntegrityError):
            return HTTPException(409, "数据冲突")
        elif isinstance(e, DataError):
            return HTTPException(400, "数据格式错误")
        else:
            logger.error(f"数据库错误: {e}")
            return HTTPException(500, "数据库操作失败")
    
    @staticmethod
    def handle_external_api_error(e: Exception) -> HTTPException:
        """处理外部API错误"""
        if isinstance(e, TimeoutError):
            return HTTPException(504, "外部服务超时")
        elif isinstance(e, ConnectionError):
            return HTTPException(502, "外部服务不可用")
        else:
            logger.error(f"外部API错误: {e}")
            return HTTPException(500, "外部服务调用失败")

# 监控指标收集
class MetricsCollector:
    """指标收集器"""
    
    def __init__(self):
        self.request_counter = Counter(
            'http_requests_total',
            'Total HTTP requests',
            ['method', 'endpoint', 'status']
        )
        
        self.request_duration = Histogram(
            'http_request_duration_seconds',
            'HTTP request duration',
            ['method', 'endpoint']
        )
        
        self.execution_counter = Counter(
            'agent_executions_total',
            'Total agent executions',
            ['status', 'graph_id']
        )
    
    def record_request(self, method: str, endpoint: str, status: int, duration: float):
        """记录请求指标"""
        self.request_counter.labels(
            method=method,
            endpoint=endpoint,
            status=status
        ).inc()
        
        self.request_duration.labels(
            method=method,
            endpoint=endpoint
        ).observe(duration)
    
    def record_execution(self, status: str, graph_id: str):
        """记录执行指标"""
        self.execution_counter.labels(
            status=status,
            graph_id=graph_id
        ).inc()

# 健康检查
class HealthChecker:
    """健康检查器"""
    
    def __init__(self):
        self.checks = {}
    
    def register_check(self, name: str, check_func: Callable):
        """注册健康检查"""
        self.checks[name] = check_func
    
    async def run_checks(self) -> Dict[str, Any]:
        """运行所有健康检查"""
        results = {}
        overall_healthy = True
        
        for name, check_func in self.checks.items():
            try:
                start_time = time.time()
                result = await check_func()
                duration = time.time() - start_time
                
                results[name] = {
                    "status": "healthy" if result else "unhealthy",
                    "duration": duration,
                    "timestamp": datetime.utcnow().isoformat()
                }
                
                if not result:
                    overall_healthy = False
                    
            except Exception as e:
                results[name] = {
                    "status": "error",
                    "error": str(e),
                    "timestamp": datetime.utcnow().isoformat()
                }
                overall_healthy = False
        
        return {
            "status": "healthy" if overall_healthy else "unhealthy",
            "checks": results,
            "timestamp": datetime.utcnow().isoformat()
        }

# 使用示例
health_checker = HealthChecker()

# 注册数据库健康检查
async def check_database():
    try:
        await database.fetch_val("SELECT 1")
        return True
    except:
        return False

health_checker.register_check("database", check_database)

# 注册Redis健康检查
async def check_redis():
    try:
        await redis_client.ping()
        return True
    except:
        return False

health_checker.register_check("redis", check_redis)

3. 安全最佳实践

# 输入验证和清理
class InputValidator:
    """输入验证器"""
    
    @staticmethod
    def sanitize_html(text: str) -> str:
        """清理HTML内容"""
        import bleach
        
        allowed_tags = ['p', 'br', 'strong', 'em', 'ul', 'ol', 'li']
        allowed_attributes = {}
        
        return bleach.clean(
            text,
            tags=allowed_tags,
            attributes=allowed_attributes,
            strip=True
        )
    
    @staticmethod
    def validate_file_upload(file_data: bytes, allowed_types: List[str]) -> bool:
        """验证文件上传"""
        import magic
        
        # 检查文件类型
        file_type = magic.from_buffer(file_data, mime=True)
        if file_type not in allowed_types:
            raise ValueError(f"不允许的文件类型: {file_type}")
        
        # 检查文件大小
        max_size = 10 * 1024 * 1024  # 10MB
        if len(file_data) > max_size:
            raise ValueError("文件大小超过限制")
        
        return True
    
    @staticmethod
    def validate_sql_injection(query: str) -> bool:
        """检查SQL注入"""
        dangerous_patterns = [
            r"union\s+select",
            r"drop\s+table",
            r"delete\s+from",
            r"insert\s+into",
            r"update\s+set",
            r"exec\s*\(",
            r"script\s*>",
        ]
        
        query_lower = query.lower()
        for pattern in dangerous_patterns:
            if re.search(pattern, query_lower):
                raise ValueError("检测到潜在的SQL注入攻击")
        
        return True

# 权限控制
class PermissionManager:
    """权限管理器"""
    
    def __init__(self):
        self.permissions = {
            "admin": [
                "user.create", "user.read", "user.update", "user.delete",
                "agent.create", "agent.read", "agent.update", "agent.delete",
                "store.approve", "store.reject", "store.manage"
            ],
            "user": [
                "agent.create", "agent.read", "agent.update", "agent.delete",
                "store.submit", "store.read"
            ],
            "viewer": [
                "agent.read", "store.read"
            ]
        }
    
    def check_permission(self, user_role: str, permission: str) -> bool:
        """检查权限"""
        if user_role not in self.permissions:
            return False
        
        return permission in self.permissions[user_role]
    
    def require_permission(self, permission: str):
        """权限装饰器"""
        def decorator(func):
            @functools.wraps(func)
            async def wrapper(*args, **kwargs):
                # 从请求中获取用户信息
                user = kwargs.get("user") or args[0] if args else None
                
                if not user or not self.check_permission(user.role, permission):
                    raise HTTPException(403, "权限不足")
                
                return await func(*args, **kwargs)
            return wrapper
        return decorator

# 审计日志
class AuditLogger:
    """审计日志记录器"""
    
    def __init__(self):
        self.logger = logging.getLogger("audit")
    
    def log_action(
        self,
        user_id: str,
        action: str,
        resource_type: str,
        resource_id: str,
        details: Optional[Dict] = None
    ):
        """记录用户操作"""
        audit_record = {
            "timestamp": datetime.utcnow().isoformat(),
            "user_id": user_id,
            "action": action,
            "resource_type": resource_type,
            "resource_id": resource_id,
            "details": details or {},
            "ip_address": self._get_client_ip(),
            "user_agent": self._get_user_agent()
        }
        
        self.logger.info(json.dumps(audit_record))
    
    def _get_client_ip(self) -> str:
        """获取客户端IP"""
        # 从请求上下文获取IP
        return "unknown"
    
    def _get_user_agent(self) -> str:
        """获取用户代理"""
        # 从请求上下文获取User-Agent
        return "unknown"

4. 测试策略

# 单元测试示例
import pytest
from unittest.mock import Mock, AsyncMock

class TestTextProcessingBlock:
    """文本处理Block测试"""
    
    def setup_method(self):
        """测试前准备"""
        self.block = TextProcessingBlock()
    
    def test_upper_operation(self):
        """测试大写转换"""
        input_data = TextProcessingBlock.Input(
            text="hello world",
            operation="upper"
        )
        
        result = self.block.run(input_data)
        
        assert result.success is True
        assert result.output_data.processed_text == "HELLO WORLD"
        assert result.output_data.original_length == 11
        assert result.output_data.processed_length == 11
    
    def test_invalid_operation(self):
        """测试无效操作"""
        input_data = TextProcessingBlock.Input(
            text="hello world",
            operation="invalid"
        )
        
        result = self.block.run(input_data)
        
        assert result.success is False
        assert "不支持的操作" in result.error

# 集成测试示例
@pytest.mark.asyncio
class TestAgentExecution:
    """智能体执行集成测试"""
    
    async def test_simple_workflow_execution(self, test_client, test_user):
        """测试简单工作流执行"""
        # 1. 创建测试智能体
        graph_data = {
            "name": "测试智能体",
            "description": "用于测试的简单智能体",
            "nodes": [
                {
                    "id": "node1",
                    "block_type": "TEXT_PROCESSING",
                    "input_data": {
                        "text": "hello world",
                        "operation": "upper"
                    }
                }
            ]
        }
        
        response = await test_client.post(
            "/api/v1/graphs",
            json=graph_data,
            headers={"Authorization": f"Bearer {test_user.token}"}
        )
        
        assert response.status_code == 200
        graph = response.json()
        
        # 2. 执行智能体
        execution_request = {
            "input_data": {}
        }
        
        response = await test_client.post(
            f"/api/v1/graphs/{graph['id']}/executions",
            json=execution_request,
            headers={"Authorization": f"Bearer {test_user.token}"}
        )
        
        assert response.status_code == 200
        execution = response.json()
        
        # 3. 等待执行完成
        await asyncio.sleep(2)
        
        # 4. 检查执行结果
        response = await test_client.get(
            f"/api/v1/executions/{execution['execution_id']}",
            headers={"Authorization": f"Bearer {test_user.token}"}
        )
        
        assert response.status_code == 200
        result = response.json()
        assert result["status"] == "COMPLETED"

# 性能测试示例
@pytest.mark.performance
class TestPerformance:
    """性能测试"""
    
    @pytest.mark.asyncio
    async def test_concurrent_executions(self, test_client, test_user):
        """测试并发执行性能"""
        # 创建多个并发执行请求
        tasks = []
        for i in range(10):
            task = self._execute_agent(test_client, test_user, i)
            tasks.append(task)
        
        # 并发执行
        start_time = time.time()
        results = await asyncio.gather(*tasks)
        end_time = time.time()
        
        # 验证结果
        assert all(result["success"] for result in results)
        assert end_time - start_time < 30  # 30秒内完成
    
    async def _execute_agent(self, client, user, index):
        """执行单个智能体"""
        # 实现具体的执行逻辑
        pass

总结

AutoGPT平台是一个功能强大、架构完善的AI智能体开发平台。通过本手册的学习,开发者可以:

  1. 快速上手: 了解平台的核心概念和基本使用方法
  2. 深入开发: 掌握各个模块的API接口和实现细节
  3. 优化性能: 应用最佳实践提升系统性能和稳定性
  4. 保障安全: 实施安全措施保护系统和数据安全
  5. 持续改进: 通过监控和测试不断优化系统

平台的模块化设计使得开发者可以根据需要扩展功能,丰富的API接口支持各种集成场景,完善的监控和日志系统确保系统的可观测性和可维护性。

希望本手册能够帮助开发者更好地理解和使用AutoGPT平台,构建出优秀的AI应用解决方案。