1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
| from typing import Any, Dict, List, Optional, Union, Iterator, AsyncIterator
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import BaseMessage, AIMessage, HumanMessage, SystemMessage
from langchain_core.outputs import ChatGeneration, ChatResult, ChatGenerationChunk
from langchain_core.callbacks import CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun
import openai
class ChatOpenAI(BaseChatModel):
"""OpenAI聊天模型的LangChain包装器。
这个类将OpenAI的聊天完成API包装成LangChain的BaseChatModel接口,
提供统一的调用方式和完整的功能支持。
主要特性:
1. 完整的OpenAI API支持:支持所有OpenAI聊天模型
2. 流式处理:支持实时流式响应
3. 函数调用:支持OpenAI的函数调用功能
4. 异步支持:原生异步实现
5. 错误处理:完善的错误处理和重试机制
"""
# === 核心配置 ===
client: Any = Field(default=None, exclude=True)
"""OpenAI客户端实例。"""
async_client: Any = Field(default=None, exclude=True)
"""异步OpenAI客户端实例。"""
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""要使用的模型名称。"""
temperature: float = 0.7
"""采样温度,控制输出的随机性。"""
max_tokens: Optional[int] = None
"""生成的最大token数。"""
top_p: float = 1
"""核采样参数。"""
frequency_penalty: float = 0
"""频率惩罚参数。"""
presence_penalty: float = 0
"""存在惩罚参数。"""
n: int = 1
"""为每个输入生成的完成数。"""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""请求超时时间。"""
max_retries: int = 2
"""最大重试次数。"""
streaming: bool = False
"""是否使用流式处理。"""
# === OpenAI特定配置 ===
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
"""OpenAI API密钥。"""
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
"""OpenAI API基础URL。"""
openai_organization: Optional[str] = Field(default=None, alias="organization")
"""OpenAI组织ID。"""
openai_proxy: Optional[str] = None
"""代理设置。"""
tiktoken_model_name: Optional[str] = None
"""用于token计数的模型名称。"""
# === 函数调用支持 ===
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""传递给模型的额外参数。"""
def __init__(self, **kwargs: Any):
"""初始化ChatOpenAI。
Args:
**kwargs: 配置参数。
"""
super().__init__(**kwargs)
# 初始化OpenAI客户端
self._init_clients()
def _init_clients(self) -> None:
"""初始化OpenAI客户端。"""
client_params = {
"api_key": self.openai_api_key,
"base_url": self.openai_api_base,
"organization": self.openai_organization,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
}
# 移除None值
client_params = {k: v for k, v in client_params.items() if v is not None}
# 创建同步客户端
self.client = openai.OpenAI(**client_params)
# 创建异步客户端
self.async_client = openai.AsyncOpenAI(**client_params)
@property
def _llm_type(self) -> str:
"""返回LLM类型。"""
return "openai-chat"
@property
def _identifying_params(self) -> Dict[str, Any]:
"""获取标识参数。"""
return {
"model_name": self.model_name,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
}
def _convert_messages_to_openai_format(
self, messages: List[BaseMessage]
) -> List[Dict[str, Any]]:
"""将LangChain消息转换为OpenAI格式。
Args:
messages: LangChain消息列表。
Returns:
OpenAI格式的消息列表。
"""
openai_messages = []
for message in messages:
if isinstance(message, HumanMessage):
role = "user"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, SystemMessage):
role = "system"
else:
raise ValueError(f"不支持的消息类型: {type(message)}")
openai_message = {"role": role, "content": message.content}
# 处理函数调用
if hasattr(message, "additional_kwargs") and message.additional_kwargs:
openai_message.update(message.additional_kwargs)
openai_messages.append(openai_message)
return openai_messages
def _create_chat_result(self, response: Any) -> ChatResult:
"""从OpenAI响应创建ChatResult。
Args:
response: OpenAI API响应。
Returns:
LangChain ChatResult。
"""
generations = []
for choice in response.choices:
message = choice.message
# 创建AIMessage
ai_message = AIMessage(
content=message.content or "",
additional_kwargs={
k: v for k, v in message.dict().items()
if k not in ("content", "role")
},
)
# 创建ChatGeneration
generation = ChatGeneration(
message=ai_message,
generation_info={
"finish_reason": choice.finish_reason,
"logprobs": getattr(choice, "logprobs", None),
},
)
generations.append(generation)
# 创建LLM输出信息
llm_output = {
"token_usage": response.usage.dict() if response.usage else {},
"model_name": response.model,
"system_fingerprint": getattr(response, "system_fingerprint", None),
}
return ChatResult(generations=generations, llm_output=llm_output)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""生成聊天响应。
Args:
messages: 输入消息列表。
stop: 停止序列。
run_manager: 回调管理器。
**kwargs: 额外参数。
Returns:
聊天结果。
"""
# 准备请求参数
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": False,
}
# 添加停止序列
if stop:
params["stop"] = stop
# 添加额外参数
params.update(self.model_kwargs)
params.update(kwargs)
# 调用OpenAI API
try:
response = self.client.chat.completions.create(**params)
return self._create_chat_result(response)
except Exception as e:
if run_manager:
run_manager.on_llm_error(e)
raise e
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""异步生成聊天响应。"""
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": False,
}
if stop:
params["stop"] = stop
params.update(self.model_kwargs)
params.update(kwargs)
try:
response = await self.async_client.chat.completions.create(**params)
return self._create_chat_result(response)
except Exception as e:
if run_manager:
await run_manager.on_llm_error(e)
raise e
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""流式生成聊天响应。
Args:
messages: 输入消息列表。
stop: 停止序列。
run_manager: 回调管理器。
**kwargs: 额外参数。
Yields:
聊天生成块。
"""
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": True,
}
if stop:
params["stop"] = stop
params.update(self.model_kwargs)
params.update(kwargs)
try:
stream = self.client.chat.completions.create(**params)
for chunk in stream:
if not chunk.choices:
continue
choice = chunk.choices[0]
delta = choice.delta
# 创建消息块
message_chunk = AIMessage(
content=delta.content or "",
additional_kwargs={
k: v for k, v in delta.dict().items()
if k not in ("content", "role")
},
)
# 创建生成块
generation_chunk = ChatGenerationChunk(
message=message_chunk,
generation_info={
"finish_reason": choice.finish_reason,
},
)
# 触发回调
if run_manager:
run_manager.on_llm_new_token(
delta.content or "",
chunk=generation_chunk,
)
yield generation_chunk
except Exception as e:
if run_manager:
run_manager.on_llm_error(e)
raise e
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
"""异步流式生成聊天响应。"""
openai_messages = self._convert_messages_to_openai_format(messages)
params = {
"model": self.model_name,
"messages": openai_messages,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"stream": True,
}
if stop:
params["stop"] = stop
params.update(self.model_kwargs)
params.update(kwargs)
try:
stream = await self.async_client.chat.completions.create(**params)
async for chunk in stream:
if not chunk.choices:
continue
choice = chunk.choices[0]
delta = choice.delta
message_chunk = AIMessage(
content=delta.content or "",
additional_kwargs={
k: v for k, v in delta.dict().items()
if k not in ("content", "role")
},
)
generation_chunk = ChatGenerationChunk(
message=message_chunk,
generation_info={
"finish_reason": choice.finish_reason,
},
)
if run_manager:
await run_manager.on_llm_new_token(
delta.content or "",
chunk=generation_chunk,
)
yield generation_chunk
except Exception as e:
if run_manager:
await run_manager.on_llm_error(e)
raise e
# === 函数调用支持 ===
def bind_functions(
self,
functions: List[Dict[str, Any]],
*,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
**kwargs: Any,
) -> "ChatOpenAI":
"""绑定函数到模型。
Args:
functions: 函数定义列表。
function_call: 函数调用配置。
**kwargs: 额外参数。
Returns:
绑定了函数的新模型实例。
"""
extra_kwargs = {
"functions": functions,
**kwargs,
}
if function_call is not None:
extra_kwargs["function_call"] = function_call
return self.bind(**extra_kwargs)
def bind_tools(
self,
tools: List[Union[Dict[str, Any], type, Callable, BaseTool]],
**kwargs: Any,
) -> "ChatOpenAI":
"""绑定工具到模型。
Args:
tools: 工具列表。
**kwargs: 额外参数。
Returns:
绑定了工具的新模型实例。
"""
# 转换工具为OpenAI函数格式
functions = []
for tool in tools:
if isinstance(tool, dict):
functions.append(tool)
elif isinstance(tool, type) and issubclass(tool, BaseModel):
functions.append(convert_pydantic_to_openai_function(tool))
elif callable(tool):
functions.append(convert_to_openai_function(tool))
elif isinstance(tool, BaseTool):
functions.append(format_tool_to_openai_function(tool))
else:
raise ValueError(f"不支持的工具类型: {type(tool)}")
return self.bind_functions(functions, **kwargs)
# === Token计算 ===
def get_num_tokens(self, text: str) -> int:
"""计算文本的token数量。
Args:
text: 输入文本。
Returns:
token数量。
"""
try:
import tiktoken
except ImportError:
raise ImportError(
"tiktoken包是计算token数量所必需的。"
"请使用 `pip install tiktoken` 安装。"
)
model_name = self.tiktoken_model_name or self.model_name
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
# 如果模型不支持,使用默认编码
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(text))
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""计算消息列表的token数量。
Args:
messages: 消息列表。
Returns:
token数量。
"""
try:
import tiktoken
except ImportError:
raise ImportError(
"tiktoken包是计算token数量所必需的。"
"请使用 `pip install tiktoken` 安装。"
)
model_name = self.tiktoken_model_name or self.model_name
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
# 计算消息的token数量
# 这是OpenAI官方推荐的计算方法
tokens_per_message = 3 # 每条消息的固定开销
tokens_per_name = 1 # 每个名称的开销
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
# 计算内容token
if message.content:
num_tokens += len(encoding.encode(message.content))
# 计算角色token
if isinstance(message, HumanMessage):
num_tokens += len(encoding.encode("user"))
elif isinstance(message, AIMessage):
num_tokens += len(encoding.encode("assistant"))
elif isinstance(message, SystemMessage):
num_tokens += len(encoding.encode("system"))
num_tokens += 3 # 每次回复的固定开销
return num_tokens
|