1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
| class ManufacturingFaultDetection:
"""制造业故障检测系统"""
def __init__(self):
# 多模态数据处理
self.vision_model = YOLOv8("fault_detection.pt")
self.sensor_analyzer = SensorDataAnalyzer()
self.audio_classifier = AudioFaultClassifier()
# 故障知识库
self.fault_kb = FaultKnowledgeBase()
# 决策 Agent
self.diagnostic_agent = self._create_diagnostic_agent()
# 告警系统
self.alert_system = AlertSystem()
def _create_diagnostic_agent(self):
"""创建诊断 Agent"""
tools = [
HistoricalDataTool(),
MaintenanceRecordTool(),
PartSpecificationTool(),
WorkOrderTool()
]
prompt = ChatPromptTemplate.from_messages([
("system", """你是设备故障诊断专家。基于以下信息进行故障分析:
检测数据:
- 视觉检测:{visual_detection}
- 传感器数据:{sensor_data}
- 音频分析:{audio_analysis}
- 历史记录:{historical_data}
诊断要求:
1. 分析故障类型和严重程度
2. 提供可能的原因分析
3. 给出维修建议和优先级
4. 评估停机风险
5. 推荐预防措施
请提供结构化的诊断报告。"""),
("human", "设备ID:{equipment_id}\n异常描述:{anomaly_description}")
])
return create_openai_functions_agent(
llm=ChatOpenAI(model="gpt-4", temperature=0.1),
tools=tools,
prompt=prompt
)
async def detect_and_diagnose(self, equipment_id: str, image_data: bytes, sensor_data: Dict, audio_data: bytes) -> Dict[str, Any]:
"""检测和诊断故障"""
# 1. 多模态检测
visual_result = await self._analyze_visual_data(image_data)
sensor_result = await self._analyze_sensor_data(sensor_data)
audio_result = await self._analyze_audio_data(audio_data)
# 2. 异常判断
anomalies = self._detect_anomalies(visual_result, sensor_result, audio_result)
if not anomalies:
return {"status": "normal", "confidence": 0.95}
# 3. 故障诊断
diagnosis = await self._diagnose_fault(
equipment_id=equipment_id,
visual_detection=visual_result,
sensor_data=sensor_result,
audio_analysis=audio_result,
anomalies=anomalies
)
# 4. 风险评估
risk_level = self._assess_risk(diagnosis, equipment_id)
# 5. 生成告警
if risk_level >= 3: # 高风险
await self._trigger_alert(equipment_id, diagnosis, risk_level)
return {
"status": "fault_detected",
"diagnosis": diagnosis,
"risk_level": risk_level,
"recommended_actions": diagnosis.get("recommendations", []),
"estimated_downtime": diagnosis.get("estimated_downtime", "未知")
}
async def _analyze_visual_data(self, image_data: bytes) -> Dict[str, Any]:
"""视觉数据分析"""
# YOLO 检测
results = self.vision_model(image_data)
detected_faults = []
for result in results:
if result.confidence > 0.7:
detected_faults.append({
"type": result.class_name,
"confidence": result.confidence,
"location": result.bbox,
"severity": self._assess_visual_severity(result)
})
return {
"detected_faults": detected_faults,
"image_quality": self._assess_image_quality(image_data),
"timestamp": datetime.now().isoformat()
}
async def _diagnose_fault(self, **kwargs) -> Dict[str, Any]:
"""故障诊断"""
# 构建诊断上下文
context = {
"equipment_id": kwargs["equipment_id"],
"visual_detection": json.dumps(kwargs["visual_detection"], ensure_ascii=False),
"sensor_data": json.dumps(kwargs["sensor_data"], ensure_ascii=False),
"audio_analysis": json.dumps(kwargs["audio_analysis"], ensure_ascii=False),
"anomaly_description": self._format_anomalies(kwargs["anomalies"])
}
# Agent 诊断
result = await self.diagnostic_agent.ainvoke(context)
# 解析结构化结果
diagnosis = self._parse_diagnosis_result(result["output"])
return diagnosis
|