1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
| from typing import Any, Dict, List, Optional, Union
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from langchain_core.outputs import ChatResult, ChatGeneration
import base64
import requests
from PIL import Image
import io
class MultiModalChatModel(BaseChatModel):
"""多模态聊天模型集成
参考:LangChain 核心概念深度解析与实战指南
https://blog.csdn.net/jkgSFS/article/details/145068612
"""
def __init__(
self,
model_name: str = "gpt-4-vision-preview",
api_key: Optional[str] = None,
base_url: Optional[str] = None,
max_tokens: int = 1000,
temperature: float = 0.1,
**kwargs
):
super().__init__(**kwargs)
self.model_name = model_name
self.api_key = api_key
self.base_url = base_url or "https://api.openai.com/v1"
self.max_tokens = max_tokens
self.temperature = temperature
# 支持的图像格式
self.supported_image_formats = {'.jpg', '.jpeg', '.png', '.gif', '.webp'}
# 模态处理器注册
self.modality_processors = {
'text': self._process_text,
'image': self._process_image,
'audio': self._process_audio,
'video': self._process_video
}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[Any] = None,
**kwargs: Any,
) -> ChatResult:
"""生成多模态响应"""
# 处理多模态消息
processed_messages = []
for message in messages:
processed_msg = self._process_multimodal_message(message)
processed_messages.append(processed_msg)
# 构建API请求
request_data = {
"model": self.model_name,
"messages": processed_messages,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
}
if stop:
request_data["stop"] = stop
# 发送请求
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
try:
response = requests.post(
f"{self.base_url}/chat/completions",
json=request_data,
headers=headers,
timeout=60
)
response.raise_for_status()
result = response.json()
# 解析响应
choice = result["choices"][0]
message_content = choice["message"]["content"]
# 创建生成结果
generation = ChatGeneration(
message=AIMessage(content=message_content),
generation_info={
"finish_reason": choice.get("finish_reason"),
"model": result.get("model"),
"usage": result.get("usage", {})
}
)
return ChatResult(generations=[generation])
except Exception as e:
raise ValueError(f"多模态模型调用失败: {str(e)}")
def _process_multimodal_message(self, message: BaseMessage) -> Dict[str, Any]:
"""处理多模态消息"""
if isinstance(message, HumanMessage):
content = message.content
# 检查是否包含多模态内容
if isinstance(content, str):
# 纯文本消息
return {
"role": "user",
"content": content
}
elif isinstance(content, list):
# 多模态内容列表
processed_content = []
for item in content:
if isinstance(item, dict):
modality_type = item.get("type", "text")
processor = self.modality_processors.get(modality_type)
if processor:
processed_item = processor(item)
processed_content.append(processed_item)
else:
# 未知模态类型,作为文本处理
processed_content.append({
"type": "text",
"text": str(item)
})
else:
# 非字典项,作为文本处理
processed_content.append({
"type": "text",
"text": str(item)
})
return {
"role": "user",
"content": processed_content
}
elif isinstance(message, AIMessage):
return {
"role": "assistant",
"content": message.content
}
else:
# 其他消息类型
return {
"role": "user",
"content": str(message.content)
}
def _process_text(self, item: Dict[str, Any]) -> Dict[str, Any]:
"""处理文本模态"""
return {
"type": "text",
"text": item.get("text", "")
}
def _process_image(self, item: Dict[str, Any]) -> Dict[str, Any]:
"""处理图像模态"""
image_data = item.get("image_url") or item.get("image")
if isinstance(image_data, str):
if image_data.startswith("http"):
# 网络图片URL
return {
"type": "image_url",
"image_url": {
"url": image_data,
"detail": item.get("detail", "auto")
}
}
elif image_data.startswith("data:image"):
# Base64编码的图片
return {
"type": "image_url",
"image_url": {
"url": image_data,
"detail": item.get("detail", "auto")
}
}
else:
# 本地文件路径
encoded_image = self._encode_image_file(image_data)
return {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}",
"detail": item.get("detail", "auto")
}
}
return {
"type": "text",
"text": "[无法处理的图像数据]"
}
def _process_audio(self, item: Dict[str, Any]) -> Dict[str, Any]:
"""处理音频模态(暂不支持,转为文本描述)"""
return {
"type": "text",
"text": f"[音频文件: {item.get('audio', 'unknown')}]"
}
def _process_video(self, item: Dict[str, Any]) -> Dict[str, Any]:
"""处理视频模态(暂不支持,转为文本描述)"""
return {
"type": "text",
"text": f"[视频文件: {item.get('video', 'unknown')}]"
}
def _encode_image_file(self, image_path: str) -> str:
"""编码本地图像文件为Base64"""
try:
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
return encoded_string
except Exception as e:
raise ValueError(f"无法编码图像文件 {image_path}: {str(e)}")
@property
def _llm_type(self) -> str:
return "multimodal_chat"
# 使用示例
def demo_multimodal_integration():
"""多模态集成演示"""
# 初始化多模态模型
multimodal_model = MultiModalChatModel(
model_name="gpt-4-vision-preview",
api_key="your-api-key-here"
)
# 创建多模态消息
multimodal_message = HumanMessage(content=[
{
"type": "text",
"text": "请分析这张图片中的内容,并描述你看到的主要元素。"
},
{
"type": "image",
"image_url": "https://example.com/image.jpg",
"detail": "high"
}
])
# 调用模型
try:
result = multimodal_model._generate([multimodal_message])
print(f"多模态分析结果: {result.generations[0].message.content}")
except Exception as e:
print(f"多模态调用失败: {e}")
if __name__ == "__main__":
demo_multimodal_integration()
|