概述

AutoGPT AI Agent是平台的智能核心,基于ReAct(Reasoning and Acting)推理框架实现自主决策和执行能力。结合网上深度技术文章的研究成果,Agent通过多模态输入处理、分层任务规划、智能记忆管理和持续学习机制,实现了接近人类认知水平的智能行为。本文将深入剖析这些核心技术的实现原理和代码细节。

1. ReAct推理行动框架深度实现

1.1 ReAct架构设计理念

ReAct框架是AutoGPT智能决策的核心,将推理(Reasoning)和行动(Acting)有机结合:

  • 推理阶段:分析当前情况,理解问题本质,制定行动策略
  • 行动阶段:选择合适工具,执行具体操作,收集执行结果
  • 观察阶段:分析行动效果,获取环境反馈,更新知识状态
  • 反思阶段:评估整体进展,学习经验教训,优化决策策略

1.2 ReAct推理引擎架构图

graph TB subgraph "ReAct推理引擎架构" subgraph "感知层 - Perception Layer" MultiModalInput[多模态输入感知] ContextAnalyzer[上下文分析器] EnvironmentMonitor[环境状态监控] end subgraph "认知层 - Cognition Layer" ProblemAnalyzer[问题分析器] GoalDecomposer[目标分解器] StrategyPlanner[策略规划器] RiskAssessor[风险评估器] end subgraph "决策层 - Decision Layer" ActionSelector[行动选择器] ToolMatcher[工具匹配器] ParameterOptimizer[参数优化器] ExecutionController[执行控制器] end subgraph "执行层 - Execution Layer" ToolExecutor[工具执行器] ResultCollector[结果收集器] FeedbackProcessor[反馈处理器] end subgraph "学习层 - Learning Layer" ExperienceRecorder[经验记录器] PatternRecognizer[模式识别器] StrategyOptimizer[策略优化器] KnowledgeUpdater[知识更新器] end subgraph "记忆系统 - Memory System" WorkingMemory[工作记忆] EpisodicMemory[情景记忆] SemanticMemory[语义记忆] ProceduralMemory[程序记忆] end end %% 信息流向 MultiModalInput --> ContextAnalyzer ContextAnalyzer --> ProblemAnalyzer ProblemAnalyzer --> GoalDecomposer GoalDecomposer --> StrategyPlanner StrategyPlanner --> RiskAssessor RiskAssessor --> ActionSelector ActionSelector --> ToolMatcher ToolMatcher --> ParameterOptimizer ParameterOptimizer --> ExecutionController ExecutionController --> ToolExecutor ToolExecutor --> ResultCollector ResultCollector --> FeedbackProcessor FeedbackProcessor --> ExperienceRecorder ExperienceRecorder --> PatternRecognizer PatternRecognizer --> StrategyOptimizer StrategyOptimizer --> KnowledgeUpdater %% 记忆交互 ProblemAnalyzer --> WorkingMemory StrategyPlanner --> EpisodicMemory ToolMatcher --> SemanticMemory ExecutionController --> ProceduralMemory WorkingMemory --> ContextAnalyzer EpisodicMemory --> GoalDecomposer SemanticMemory --> ActionSelector ProceduralMemory --> ToolExecutor

1.3 ReAct推理引擎核心实现

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# /autogpt_platform/backend/backend/blocks/agent_reasoning.py

import asyncio
import time
import uuid
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from enum import Enum

class ReasoningPhase(Enum):
    """推理阶段枚举"""
    PERCEPTION = "perception"      # 感知阶段
    ANALYSIS = "analysis"          # 分析阶段
    PLANNING = "planning"          # 规划阶段
    ACTION = "action"              # 行动阶段
    OBSERVATION = "observation"    # 观察阶段
    REFLECTION = "reflection"      # 反思阶段

@dataclass
class ReasoningStep:
    """推理步骤数据结构"""
    phase: ReasoningPhase
    input_data: Dict[str, Any]
    reasoning_content: str
    action_plan: Optional[Dict[str, Any]] = None
    execution_result: Optional[Dict[str, Any]] = None
    reflection_notes: Optional[str] = None
    timestamp: float = 0.0
    step_id: str = ""
    
    def __post_init__(self):
        if not self.timestamp:
            self.timestamp = time.time()
        if not self.step_id:
            self.step_id = str(uuid.uuid4())

class ReActReasoningEngine:
    """
    ReAct推理引擎核心实现
    
    基于网上深度技术文章的ReAct方法论,实现完整的推理-行动循环
    
    核心特性:
    1. 结构化推理过程
    2. 上下文感知决策
    3. 自适应策略调整
    4. 经验学习机制
    """
    
    def __init__(self, llm_client, tool_registry, memory_manager):
        self.llm_client = llm_client
        self.tool_registry = tool_registry
        self.memory_manager = memory_manager
        
        # 推理历史和上下文
        self.reasoning_history: List[ReasoningStep] = []
        self.current_context = {}
        self.goal_stack = []
        
        # 提示模板
        self.prompt_templates = self._initialize_prompt_templates()
        
        # 推理配置
        self.max_reasoning_steps = 50
        self.max_thinking_time = 300  # 5分钟思考时间限制
    
    async def reason_and_act(
        self,
        goal: str,
        initial_context: Dict[str, Any] = None,
        available_tools: List[str] = None
    ) -> Dict[str, Any]:
        """
        执行ReAct推理和行动循环
        
        这是Agent智能决策的核心方法,实现完整的推理-行动-观察-反思循环
        
        参数:
            goal: 要达成的目标描述
            initial_context: 初始上下文信息
            available_tools: 可用工具列表
            
        返回:
            推理和执行的完整结果
        """
        
        logger.info(f"开始ReAct推理循环,目标: {goal}")
        
        # 初始化推理环境
        self.current_context = initial_context or {}
        self.goal_stack = [goal]
        self.reasoning_history.clear()
        
        reasoning_start_time = time.time()
        step_count = 0
        
        try:
            while self.goal_stack and step_count < self.max_reasoning_steps:
                step_count += 1
                
                # 检查时间限制
                if time.time() - reasoning_start_time > self.max_thinking_time:
                    logger.warning("推理时间超限,终止推理循环")
                    break
                
                current_goal = self.goal_stack[-1]  # 当前目标
                
                # 第一阶段:感知和分析
                perception_result = await self._perception_phase(current_goal)
                analysis_result = await self._analysis_phase(perception_result)
                
                # 第二阶段:规划和决策
                planning_result = await self._planning_phase(analysis_result)
                
                # 检查是否需要进一步分解目标
                if planning_result.get("requires_decomposition", False):
                    sub_goals = planning_result.get("sub_goals", [])
                    self.goal_stack.extend(reversed(sub_goals))  # 逆序添加,后进先出
                    continue
                
                # 第三阶段:行动执行
                action_result = await self._action_phase(planning_result)
                
                # 第四阶段:观察和反思
                observation_result = await self._observation_phase(action_result)
                reflection_result = await self._reflection_phase(observation_result)
                
                # 更新上下文和记忆
                await self._update_context_and_memory(reflection_result)
                
                # 检查目标完成状态
                if reflection_result.get("goal_achieved", False):
                    completed_goal = self.goal_stack.pop()
                    logger.info(f"目标完成: {completed_goal}")
                    
                    if not self.goal_stack:
                        logger.info("所有目标已完成,推理循环结束")
                        break
                elif reflection_result.get("goal_failed", False):
                    failed_goal = self.goal_stack.pop()
                    logger.warning(f"目标失败: {failed_goal}")
                    
                    # 可以选择重新规划或放弃
                    if reflection_result.get("should_retry", False):
                        self.goal_stack.append(failed_goal)
                
                # 避免过快循环
                await asyncio.sleep(0.1)
            
            # 生成推理总结
            reasoning_summary = await self._generate_reasoning_summary()
            
            return {
                "goal": goal,
                "success": len(self.goal_stack) == 0,
                "steps_taken": step_count,
                "reasoning_time": time.time() - reasoning_start_time,
                "reasoning_history": self.reasoning_history,
                "final_context": self.current_context,
                "summary": reasoning_summary,
            }
            
        except Exception as e:
            logger.error(f"ReAct推理循环异常: {e}")
            return {
                "goal": goal,
                "success": False,
                "error": str(e),
                "steps_taken": step_count,
                "reasoning_history": self.reasoning_history,
            }
    
    async def _perception_phase(self, goal: str) -> Dict[str, Any]:
        """
        感知阶段:收集和分析当前环境信息
        
        感知内容:
        1. 当前环境状态
        2. 可用资源和工具
        3. 历史经验和知识
        4. 约束条件和限制
        """
        
        logger.debug(f"感知阶段开始,目标: {goal}")
        
        # 收集环境信息
        environment_state = await self._collect_environment_state()
        
        # 检索相关记忆
        relevant_memories = await self.memory_manager.retrieve_relevant_memories(
            query=goal,
            memory_types=["short_term", "long_term", "skill"],
            max_results=5
        )
        
        # 分析可用工具
        available_tools = await self._analyze_available_tools(goal)
        
        # 识别约束条件
        constraints = await self._identify_constraints(goal, environment_state)
        
        perception_result = {
            "goal": goal,
            "environment_state": environment_state,
            "relevant_memories": relevant_memories,
            "available_tools": available_tools,
            "constraints": constraints,
            "perception_quality": self._assess_perception_quality(environment_state),
        }
        
        # 记录感知步骤
        step = ReasoningStep(
            phase=ReasoningPhase.PERCEPTION,
            input_data={"goal": goal},
            reasoning_content=f"感知到环境状态,发现{len(available_tools)}个可用工具,{len(constraints)}个约束条件",
        )
        self.reasoning_history.append(step)
        
        return perception_result
    
    async def _analysis_phase(self, perception_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        分析阶段:深度分析问题本质和解决方案
        
        分析内容:
        1. 问题复杂度评估
        2. 解决方案候选集生成
        3. 资源需求分析
        4. 风险因素识别
        """
        
        goal = perception_data["goal"]
        environment_state = perception_data["environment_state"]
        available_tools = perception_data["available_tools"]
        
        logger.debug(f"分析阶段开始,分析目标: {goal}")
        
        # 构建分析提示词
        analysis_prompt = self._build_analysis_prompt(perception_data)
        
        # 调用LLM进行深度分析
        analysis_response = await self.llm_client.generate(
            prompt=analysis_prompt,
            max_tokens=1000,
            temperature=0.3,  # 较低温度确保逻辑性
        )
        
        # 解析分析结果
        analysis_result = self._parse_analysis_response(analysis_response)
        
        # 增强分析结果
        analysis_result.update({
            "complexity_score": await self._calculate_complexity_score(goal),
            "resource_requirements": await self._estimate_resource_requirements(analysis_result),
            "success_probability": await self._estimate_success_probability(analysis_result),
            "alternative_approaches": await self._generate_alternative_approaches(analysis_result),
        })
        
        # 记录分析步骤
        step = ReasoningStep(
            phase=ReasoningPhase.ANALYSIS,
            input_data=perception_data,
            reasoning_content=analysis_response,
        )
        self.reasoning_history.append(step)
        
        return analysis_result
    
    async def _planning_phase(self, analysis_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        规划阶段:制定详细的执行计划
        
        规划内容:
        1. 执行策略选择
        2. 步骤序列规划
        3. 资源分配方案
        4. 应急预案制定
        """
        
        logger.debug("规划阶段开始,制定执行计划")
        
        complexity_score = analysis_data.get("complexity_score", 0.5)
        
        # 检查是否需要分解
        if complexity_score > 0.7:
            # 复杂任务需要进一步分解
            decomposition_result = await self._decompose_complex_goal(analysis_data)
            
            if decomposition_result["should_decompose"]:
                return {
                    "requires_decomposition": True,
                    "sub_goals": decomposition_result["sub_goals"],
                    "decomposition_strategy": decomposition_result["strategy"],
                }
        
        # 构建执行计划
        execution_plan = await self._build_execution_plan(analysis_data)
        
        # 生成应急预案
        contingency_plans = await self._generate_contingency_plans(execution_plan)
        
        planning_result = {
            "requires_decomposition": False,
            "execution_plan": execution_plan,
            "contingency_plans": contingency_plans,
            "estimated_duration": execution_plan.get("duration", 0),
            "confidence_level": execution_plan.get("confidence", 0.5),
        }
        
        # 记录规划步骤
        step = ReasoningStep(
            phase=ReasoningPhase.PLANNING,
            input_data=analysis_data,
            reasoning_content=f"制定执行计划,预计耗时{execution_plan.get('duration', 0)}秒",
            action_plan=execution_plan,
        )
        self.reasoning_history.append(step)
        
        return planning_result
    
    async def _action_phase(self, planning_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        行动阶段:执行具体的操作
        
        执行内容:
        1. 工具调用执行
        2. 参数动态调整
        3. 实时监控和控制
        4. 异常处理和恢复
        """
        
        execution_plan = planning_data["execution_plan"]
        logger.debug(f"行动阶段开始,执行计划: {execution_plan.get('name', 'unknown')}")
        
        action_start_time = time.time()
        
        try:
            # 准备执行环境
            execution_context = await self._prepare_execution_context(execution_plan)
            
            # 执行主要行动
            primary_result = await self._execute_primary_action(
                execution_plan, 
                execution_context
            )
            
            # 执行后续行动(如果需要)
            follow_up_results = []
            if execution_plan.get("follow_up_actions"):
                for follow_up in execution_plan["follow_up_actions"]:
                    follow_up_result = await self._execute_follow_up_action(
                        follow_up, execution_context, primary_result
                    )
                    follow_up_results.append(follow_up_result)
            
            action_result = {
                "success": True,
                "primary_result": primary_result,
                "follow_up_results": follow_up_results,
                "execution_time": time.time() - action_start_time,
                "tools_used": execution_plan.get("tools", []),
            }
            
        except Exception as e:
            logger.error(f"行动执行失败: {e}")
            
            # 尝试应急预案
            contingency_result = await self._execute_contingency_plan(
                planning_data.get("contingency_plans", []),
                str(e)
            )
            
            action_result = {
                "success": False,
                "error": str(e),
                "contingency_result": contingency_result,
                "execution_time": time.time() - action_start_time,
            }
        
        # 记录行动步骤
        step = ReasoningStep(
            phase=ReasoningPhase.ACTION,
            input_data=planning_data,
            reasoning_content=f"执行行动计划:{execution_plan.get('description', '')}",
            action_plan=execution_plan,
            execution_result=action_result,
        )
        self.reasoning_history.append(step)
        
        return action_result
    
    async def _observation_phase(self, action_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        观察阶段:分析行动结果和环境变化
        
        观察内容:
        1. 行动结果分析
        2. 环境状态变化
        3. 新信息获取
        4. 异常情况识别
        """
        
        logger.debug("观察阶段开始,分析行动结果")
        
        # 分析行动结果
        result_analysis = await self._analyze_action_result(action_data)
        
        # 检测环境变化
        environment_changes = await self._detect_environment_changes()
        
        # 提取新获得的信息
        new_information = await self._extract_new_information(
            action_data, environment_changes
        )
        
        # 识别异常或意外情况
        anomalies = await self._detect_anomalies(action_data, environment_changes)
        
        observation_result = {
            "result_analysis": result_analysis,
            "environment_changes": environment_changes,
            "new_information": new_information,
            "anomalies": anomalies,
            "observation_quality": self._assess_observation_quality(result_analysis),
        }
        
        # 记录观察步骤
        step = ReasoningStep(
            phase=ReasoningPhase.OBSERVATION,
            input_data=action_data,
            reasoning_content=f"观察到{len(new_information)}条新信息,{len(anomalies)}个异常情况",
        )
        self.reasoning_history.append(step)
        
        return observation_result
    
    async def _reflection_phase(self, observation_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        反思阶段:评估进展和优化策略
        
        反思内容:
        1. 目标达成度评估
        2. 策略有效性分析
        3. 学习经验提取
        4. 下一步行动建议
        """
        
        logger.debug("反思阶段开始,评估整体进展")
        
        # 构建反思提示词
        reflection_prompt = self._build_reflection_prompt(observation_data)
        
        # 调用LLM进行反思
        reflection_response = await self.llm_client.generate(
            prompt=reflection_prompt,
            max_tokens=800,
            temperature=0.4,
        )
        
        # 解析反思结果
        reflection_analysis = self._parse_reflection_response(reflection_response)
        
        # 评估目标完成状态
        goal_status = await self._evaluate_goal_status(
            self.goal_stack[-1] if self.goal_stack else "",
            observation_data,
            reflection_analysis
        )
        
        # 生成学习经验
        learning_experience = await self._extract_learning_experience(
            observation_data, reflection_analysis
        )
        
        reflection_result = {
            "reflection_analysis": reflection_analysis,
            "goal_status": goal_status,
            "learning_experience": learning_experience,
            "goal_achieved": goal_status.get("achieved", False),
            "goal_failed": goal_status.get("failed", False),
            "should_retry": goal_status.get("should_retry", False),
            "next_action_suggestion": reflection_analysis.get("next_action", ""),
        }
        
        # 记录反思步骤
        step = ReasoningStep(
            phase=ReasoningPhase.REFLECTION,
            input_data=observation_data,
            reasoning_content=reflection_response,
            reflection_notes=reflection_analysis.get("key_insights", ""),
        )
        self.reasoning_history.append(step)
        
        return reflection_result
    
    def _build_analysis_prompt(self, perception_data: Dict[str, Any]) -> str:
        """构建分析阶段的提示词"""
        
        goal = perception_data["goal"]
        environment = perception_data["environment_state"]
        tools = perception_data["available_tools"]
        memories = perception_data["relevant_memories"]
        
        return f"""
请深度分析以下任务:

目标:{goal}

当前环境:
{self._format_environment_state(environment)}

可用工具:
{self._format_tool_list(tools)}

相关经验:
{self._format_memory_list(memories)}

请从以下维度进行分析:

1. 问题本质:这个目标的核心问题是什么?
2. 复杂度评估:任务的复杂程度如何?需要多少步骤?
3. 关键挑战:执行过程中可能遇到的主要困难?
4. 成功要素:完成任务需要的关键因素?
5. 风险评估:可能的失败原因和风险点?

分析结果请结构化输出:
问题本质:[分析内容]
复杂度:[1-10分] - [说明]
关键挑战:[挑战1]、[挑战2]...
成功要素:[要素1]、[要素2]...
风险评估:[风险1]、[风险2]...
"""
    
    def _build_reflection_prompt(self, observation_data: Dict[str, Any]) -> str:
        """构建反思阶段的提示词"""
        
        result_analysis = observation_data["result_analysis"]
        new_info = observation_data["new_information"]
        anomalies = observation_data["anomalies"]
        
        return f"""
请反思刚才的行动结果:

行动结果分析:
{self._format_result_analysis(result_analysis)}

新获得的信息:
{self._format_information_list(new_info)}

发现的异常:
{self._format_anomaly_list(anomalies)}

推理历史:
{self._format_reasoning_history()}

请从以下角度进行反思:

1. 效果评估:行动是否达到了预期效果?
2. 策略分析:当前策略是否合适?需要调整吗?
3. 学习收获:从这次行动中学到了什么?
4. 问题识别:发现了什么新问题或挑战?
5. 下一步建议:接下来应该怎么做?

反思结果:
效果评估:[评估内容]
策略分析:[分析内容]
学习收获:[收获内容]
问题识别:[问题内容]
下一步建议:[建议内容]
"""
    
    async def _execute_primary_action(
        self, 
        execution_plan: Dict[str, Any],
        execution_context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """执行主要行动"""
        
        tool_name = execution_plan.get("primary_tool")
        if not tool_name:
            raise ValueError("执行计划中缺少主要工具")
        
        # 获取工具实例
        tool = await self.tool_registry.get_tool(tool_name)
        if not tool:
            raise ValueError(f"工具 {tool_name} 不可用")
        
        # 准备工具参数
        tool_params = execution_plan.get("tool_parameters", {})
        
        # 执行工具调用
        logger.info(f"执行主要行动:使用工具 {tool_name}")
        
        start_time = time.time()
        
        try:
            result = await tool.execute(
                parameters=tool_params,
                context=execution_context
            )
            
            execution_time = time.time() - start_time
            
            return {
                "success": True,
                "tool_name": tool_name,
                "result": result,
                "execution_time": execution_time,
                "parameters_used": tool_params,
            }
            
        except Exception as e:
            execution_time = time.time() - start_time
            
            return {
                "success": False,
                "tool_name": tool_name,
                "error": str(e),
                "execution_time": execution_time,
                "parameters_used": tool_params,
            }
    
    async def _generate_reasoning_summary(self) -> Dict[str, Any]:
        """生成推理过程总结"""
        
        if not self.reasoning_history:
            return {"summary": "无推理历史"}
        
        # 统计各阶段的步骤数
        phase_counts = {}
        for step in self.reasoning_history:
            phase = step.phase.value
            phase_counts[phase] = phase_counts.get(phase, 0) + 1
        
        # 提取关键决策点
        key_decisions = [
            step for step in self.reasoning_history
            if step.phase in [ReasoningPhase.PLANNING, ReasoningPhase.ACTION]
        ]
        
        # 分析推理质量
        reasoning_quality = await self._assess_reasoning_quality()
        
        # 提取学习经验
        lessons_learned = await self._extract_lessons_learned()
        
        return {
            "total_steps": len(self.reasoning_history),
            "phase_distribution": phase_counts,
            "key_decisions": [
                {
                    "step_id": step.step_id,
                    "phase": step.phase.value,
                    "content": step.reasoning_content[:100] + "..." if len(step.reasoning_content) > 100 else step.reasoning_content,
                    "timestamp": step.timestamp,
                }
                for step in key_decisions
            ],
            "reasoning_quality": reasoning_quality,
            "lessons_learned": lessons_learned,
            "performance_metrics": self._calculate_performance_metrics(),
        }
    
    def _parse_analysis_response(self, response: str) -> Dict[str, Any]:
        """解析LLM分析响应"""
        
        import re
        
        # 提取结构化信息
        patterns = {
            "problem_essence": r"问题本质:(.+?)(?=复杂度:|$)",
            "complexity": r"复杂度:(\d+).*?-\s*(.+?)(?=关键挑战:|$)",
            "challenges": r"关键挑战:(.+?)(?=成功要素:|$)",
            "success_factors": r"成功要素:(.+?)(?=风险评估:|$)",
            "risk_assessment": r"风险评估:(.+?)$",
        }
        
        parsed_result = {}
        
        for key, pattern in patterns.items():
            match = re.search(pattern, response, re.DOTALL)
            if match:
                if key == "complexity":
                    parsed_result["complexity_score"] = int(match.group(1)) / 10.0
                    parsed_result["complexity_description"] = match.group(2).strip()
                else:
                    parsed_result[key] = match.group(1).strip()
        
        return parsed_result
    
    def _parse_reflection_response(self, response: str) -> Dict[str, Any]:
        """解析反思响应"""
        
        import re
        
        patterns = {
            "effectiveness": r"效果评估:(.+?)(?=策略分析:|$)",
            "strategy_analysis": r"策略分析:(.+?)(?=学习收获:|$)",
            "learning_gains": r"学习收获:(.+?)(?=问题识别:|$)",
            "problem_identification": r"问题识别:(.+?)(?=下一步建议:|$)",
            "next_action": r"下一步建议:(.+?)$",
        }
        
        parsed_result = {}
        
        for key, pattern in patterns.items():
            match = re.search(pattern, response, re.DOTALL)
            if match:
                parsed_result[key] = match.group(1).strip()
        
        # 提取关键洞察
        insights = []
        if parsed_result.get("learning_gains"):
            insights.extend(
                insight.strip() 
                for insight in parsed_result["learning_gains"].split("、")
                if insight.strip()
            )
        
        parsed_result["key_insights"] = insights
        
        return parsed_result

    def _initialize_prompt_templates(self) -> Dict[str, str]:
        """初始化提示模板"""
        
        return {
            "system": """
你是一个高级AI代理,具备强大的推理和行动能力。

核心能力:
1. 深度分析:理解问题本质,识别关键要素
2. 策略规划:制定合理可行的执行计划
3. 工具使用:熟练使用各种工具完成任务
4. 学习适应:从经验中学习,持续优化策略

工作原则:
- 逻辑清晰:每一步推理都要有明确的逻辑依据
- 行动高效:选择最有效的工具和方法
- 学习成长:从成功和失败中都要提取经验
- 用户导向:始终以用户目标为中心

请严格按照ReAct框架进行推理和行动。
""",
            
            "decomposition": """
任务分解原则:
1. 子任务应该相对独立,可以并行或串行执行
2. 每个子任务都有明确的输入、输出和成功标准
3. 子任务的粒度要合适,不能过于细碎或宽泛
4. 考虑依赖关系和执行顺序

分解策略:
- 功能性分解:按功能模块划分
- 时序性分解:按执行时间顺序划分
- 资源性分解:按所需资源类型划分
- 复杂性分解:按难度级别划分
""",
        }

2. 多模态智能体技术实现

2.1 多模态输入处理架构

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# /autogpt_platform/backend/backend/blocks/multimodal_agent.py

import asyncio
import base64
import io
from typing import Dict, List, Any, Optional, Union
from PIL import Image
import speech_recognition as sr
import cv2
import numpy as np

class MultiModalProcessor:
    """
    多模态处理器
    
    基于网上技术文章的多模态AI实现最佳实践
    
    支持模态:
    1. 文本:自然语言理解和生成
    2. 图像:图像识别、分析和生成
    3. 音频:语音识别和合成
    4. 视频:视频理解和处理
    """
    
    def __init__(self):
        self.text_processor = TextModalityProcessor()
        self.image_processor = ImageModalityProcessor()
        self.audio_processor = AudioModalityProcessor()
        self.video_processor = VideoModalityProcessor()
        
        # 跨模态理解模型
        self.cross_modal_model = CrossModalUnderstandingModel()
        
    async def process_multimodal_input(
        self,
        inputs: Dict[str, Any],
        task_context: str = ""
    ) -> Dict[str, Any]:
        """
        处理多模态输入
        
        处理流程:
        1. 识别输入模态类型
        2. 并行处理各模态数据
        3. 提取特征表示
        4. 跨模态对齐和融合
        5. 生成统一表示
        """
        
        logger.info(f"开始处理多模态输入,包含模态: {list(inputs.keys())}")
        
        # 第一步:模态识别和预处理
        modality_data = {}
        processing_tasks = []
        
        for modality_type, data in inputs.items():
            if data is None:
                continue
                
            processor = self._get_processor(modality_type)
            if processor:
                task = asyncio.create_task(
                    processor.process(data, task_context)
                )
                processing_tasks.append((modality_type, task))
        
        # 第二步:并行处理所有模态
        for modality_type, task in processing_tasks:
            try:
                processed_data = await task
                modality_data[modality_type] = processed_data
                logger.debug(f"{modality_type} 模态处理完成")
            except Exception as e:
                logger.error(f"{modality_type} 模态处理失败: {e}")
                modality_data[modality_type] = {
                    "success": False,
                    "error": str(e)
                }
        
        # 第三步:跨模态理解和融合
        if len(modality_data) > 1:
            cross_modal_result = await self.cross_modal_model.understand(
                modality_data, task_context
            )
        else:
            cross_modal_result = {"type": "single_modal"}
        
        return {
            "modality_data": modality_data,
            "cross_modal_understanding": cross_modal_result,
            "unified_representation": await self._create_unified_representation(
                modality_data, cross_modal_result
            ),
            "processing_summary": self._generate_processing_summary(modality_data),
        }
    
    def _get_processor(self, modality_type: str):
        """获取对应的模态处理器"""
        processors = {
            "text": self.text_processor,
            "image": self.image_processor,
            "audio": self.audio_processor,
            "video": self.video_processor,
        }
        return processors.get(modality_type)

class TextModalityProcessor:
    """文本模态处理器"""
    
    async def process(self, text_data: str, context: str = "") -> Dict[str, Any]:
        """
        处理文本输入
        
        处理内容:
        1. 语言检测和标准化
        2. 情感分析和意图识别
        3. 关键信息提取
        4. 语义特征表示
        """
        
        # 语言检测
        language = await self._detect_language(text_data)
        
        # 情感分析
        sentiment = await self._analyze_sentiment(text_data)
        
        # 意图识别
        intent = await self._identify_intent(text_data, context)
        
        # 关键信息提取
        key_info = await self._extract_key_information(text_data)
        
        # 语义特征
        semantic_features = await self._extract_semantic_features(text_data)
        
        return {
            "success": True,
            "modality": "text",
            "original_text": text_data,
            "language": language,
            "sentiment": sentiment,
            "intent": intent,
            "key_information": key_info,
            "semantic_features": semantic_features,
            "processing_time": time.time(),
        }
    
    async def _detect_language(self, text: str) -> str:
        """检测文本语言"""
        # 简化实现,实际可以使用langdetect等库
        if any('\u4e00' <= char <= '\u9fff' for char in text):
            return "zh-CN"
        else:
            return "en-US"
    
    async def _analyze_sentiment(self, text: str) -> Dict[str, Any]:
        """分析文本情感"""
        # 简化的情感分析,实际可以使用BERT等模型
        positive_words = ["好", "棒", "优秀", "满意", "成功"]
        negative_words = ["坏", "差", "失败", "不满", "错误"]
        
        positive_count = sum(1 for word in positive_words if word in text)
        negative_count = sum(1 for word in negative_words if word in text)
        
        if positive_count > negative_count:
            polarity = "positive"
            score = 0.7
        elif negative_count > positive_count:
            polarity = "negative"
            score = -0.7
        else:
            polarity = "neutral"
            score = 0.0
        
        return {
            "polarity": polarity,
            "score": score,
            "confidence": 0.8,
        }
    
    async def _identify_intent(self, text: str, context: str) -> Dict[str, Any]:
        """识别用户意图"""
        
        # 基于关键词和模式的意图识别
        intent_patterns = {
            "create": ["创建", "生成", "制作", "建立"],
            "search": ["搜索", "查找", "寻找", "查询"],
            "analyze": ["分析", "研究", "评估", "检查"],
            "modify": ["修改", "更新", "编辑", "调整"],
            "delete": ["删除", "移除", "清除", "取消"],
        }
        
        detected_intents = []
        for intent_type, keywords in intent_patterns.items():
            if any(keyword in text for keyword in keywords):
                detected_intents.append(intent_type)
        
        primary_intent = detected_intents[0] if detected_intents else "unknown"
        
        return {
            "primary_intent": primary_intent,
            "all_intents": detected_intents,
            "confidence": 0.8 if detected_intents else 0.3,
        }

class ImageModalityProcessor:
    """图像模态处理器"""
    
    async def process(self, image_data: Union[str, bytes], context: str = "") -> Dict[str, Any]:
        """
        处理图像输入
        
        处理内容:
        1. 图像格式识别和转换
        2. 对象检测和识别
        3. 场景理解和描述
        4. 视觉特征提取
        """
        
        try:
            # 图像加载和预处理
            image = await self._load_and_preprocess_image(image_data)
            
            # 对象检测
            detected_objects = await self._detect_objects(image)
            
            # 场景分析
            scene_analysis = await self._analyze_scene(image)
            
            # 生成图像描述
            image_description = await self._generate_image_description(
                image, detected_objects, scene_analysis
            )
            
            # 提取视觉特征
            visual_features = await self._extract_visual_features(image)
            
            return {
                "success": True,
                "modality": "image",
                "image_info": {
                    "size": image.size,
                    "mode": image.mode,
                    "format": getattr(image, 'format', 'unknown'),
                },
                "detected_objects": detected_objects,
                "scene_analysis": scene_analysis,
                "description": image_description,
                "visual_features": visual_features,
                "processing_time": time.time(),
            }
            
        except Exception as e:
            logger.error(f"图像处理失败: {e}")
            return {
                "success": False,
                "modality": "image",
                "error": str(e),
            }
    
    async def _load_and_preprocess_image(self, image_data: Union[str, bytes]) -> Image.Image:
        """加载和预处理图像"""
        
        if isinstance(image_data, str):
            if image_data.startswith('data:image'):
                # Base64编码的图像
                header, encoded = image_data.split(',', 1)
                image_bytes = base64.b64decode(encoded)
                image = Image.open(io.BytesIO(image_bytes))
            elif image_data.startswith(('http://', 'https://')):
                # 网络图像
                async with aiohttp.ClientSession() as session:
                    async with session.get(image_data) as response:
                        image_bytes = await response.read()
                        image = Image.open(io.BytesIO(image_bytes))
            else:
                # 本地文件路径
                image = Image.open(image_data)
        else:
            # 直接的字节数据
            image = Image.open(io.BytesIO(image_data))
        
        # 图像预处理
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        # 调整大小(如果太大)
        max_size = (1024, 1024)
        if image.size[0] > max_size[0] or image.size[1] > max_size[1]:
            image.thumbnail(max_size, Image.Resampling.LANCZOS)
        
        return image
    
    async def _detect_objects(self, image: Image.Image) -> List[Dict[str, Any]]:
        """对象检测(简化实现)"""
        
        # 这里可以集成YOLO、DETR等对象检测模型
        # 简化实现返回模拟结果
        detected_objects = [
            {
                "label": "person",
                "confidence": 0.95,
                "bbox": [100, 100, 200, 300],
            },
            {
                "label": "computer", 
                "confidence": 0.87,
                "bbox": [250, 150, 400, 250],
            }
        ]
        
        return detected_objects
    
    async def _analyze_scene(self, image: Image.Image) -> Dict[str, Any]:
        """场景分析"""
        
        # 场景分类(室内/室外、办公室/家庭等)
        scene_classification = await self._classify_scene(image)
        
        # 环境光照分析
        lighting_analysis = await self._analyze_lighting(image)
        
        # 空间布局分析
        spatial_layout = await self._analyze_spatial_layout(image)
        
        return {
            "scene_type": scene_classification,
            "lighting": lighting_analysis,
            "spatial_layout": spatial_layout,
        }

3. 智能记忆管理系统

3.1 分层记忆架构

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# /autogpt_platform/backend/backend/blocks/memory_management.py

class IntelligentMemorySystem:
    """
    智能记忆管理系统
    
    基于认知科学和网上技术文章的记忆模型实现
    
    记忆层次:
    1. 感觉记忆:短暂存储感知信息
    2. 工作记忆:当前任务相关的活跃信息
    3. 短期记忆:近期经验和学习内容
    4. 长期记忆:重要知识和技能
    5. 程序记忆:自动化的操作流程
    """
    
    def __init__(self, vector_db, graph_db, cache_manager):
        self.vector_db = vector_db      # 向量数据库用于语义检索
        self.graph_db = graph_db        # 图数据库用于关系存储
        self.cache_manager = cache_manager  # 缓存管理器
        
        # 不同层次的记忆存储
        self.sensory_memory = SensoryMemoryBuffer(capacity=100, retention_time=2)
        self.working_memory = WorkingMemoryManager(capacity=7, attention_span=300)
        self.short_term_memory = ShortTermMemoryStore(capacity=1000, retention_days=7)
        self.long_term_memory = LongTermMemoryStore(vector_db, graph_db)
        self.procedural_memory = ProceduralMemoryStore(cache_manager)
        
        # 记忆管理策略
        self.consolidation_scheduler = MemoryConsolidationScheduler()
        self.forgetting_mechanism = SelectiveForgettingMechanism()
        
    async def store_experience(
        self,
        experience: Dict[str, Any],
        importance_hints: Dict[str, float] = None
    ) -> str:
        """
        存储经验到记忆系统
        
        存储策略:
        1. 立即存入感觉记忆
        2. 根据注意力机制筛选进入工作记忆
        3. 基于重要性评估决定短期/长期存储
        4. 程序性知识自动提取到程序记忆
        
        参数:
            experience: 经验数据
            importance_hints: 重要性提示
            
        返回:
            记忆ID
        """
        
        memory_id = str(uuid.uuid4())
        timestamp = time.time()
        
        # 增强经验数据
        enhanced_experience = {
            "id": memory_id,
            "timestamp": timestamp,
            "content": experience,
            "importance_hints": importance_hints or {},
        }
        
        # 第一步:存入感觉记忆
        await self.sensory_memory.store(enhanced_experience)
        
        # 第二步:注意力筛选
        attention_score = await self._calculate_attention_score(enhanced_experience)
        
        if attention_score > 0.5:
            # 进入工作记忆
            await self.working_memory.add(enhanced_experience)
            
            # 第三步:重要性评估
            importance_score = await self._evaluate_importance(enhanced_experience)
            
            if importance_score > 0.7:
                # 直接进入长期记忆
                await self.long_term_memory.store(enhanced_experience)
                logger.debug(f"高重要性经验直接存入长期记忆: {memory_id}")
                
            elif importance_score > 0.3:
                # 先存入短期记忆
                await self.short_term_memory.store(enhanced_experience)
                logger.debug(f"经验存入短期记忆: {memory_id}")
                
            # 第四步:提取程序性知识
            procedural_knowledge = await self._extract_procedural_knowledge(enhanced_experience)
            if procedural_knowledge:
                await self.procedural_memory.update(procedural_knowledge)
        
        # 触发记忆整理(异步执行)
        asyncio.create_task(self._schedule_memory_consolidation())
        
        return memory_id
    
    async def retrieve_relevant_memories(
        self,
        query: str,
        context: Dict[str, Any] = None,
        max_results: int = 10,
        memory_types: List[str] = None
    ) -> List[Dict[str, Any]]:
        """
        检索相关记忆
        
        检索策略:
        1. 语义相似度检索
        2. 时间相关性过滤
        3. 重要性权重调整
        4. 上下文相关性匹配
        
        参数:
            query: 检索查询
            context: 上下文信息
            max_results: 最大结果数
            memory_types: 记忆类型筛选
            
        返回:
            相关记忆列表
        """
        
        logger.debug(f"检索相关记忆,查询: {query}")
        
        if memory_types is None:
            memory_types = ["working", "short_term", "long_term", "procedural"]
        
        # 并行从不同记忆存储中检索
        retrieval_tasks = []
        
        if "working" in memory_types:
            retrieval_tasks.append(
                ("working", self.working_memory.retrieve(query, context))
            )
        
        if "short_term" in memory_types:
            retrieval_tasks.append(
                ("short_term", self.short_term_memory.retrieve(query, context))
            )
        
        if "long_term" in memory_types:
            retrieval_tasks.append(
                ("long_term", self.long_term_memory.retrieve(query, context))
            )
        
        if "procedural" in memory_types:
            retrieval_tasks.append(
                ("procedural", self.procedural_memory.retrieve(query, context))
            )
        
        # 收集检索结果
        all_memories = []
        for memory_type, retrieval_task in retrieval_tasks:
            try:
                memories = await retrieval_task
                for memory in memories:
                    memory["source_type"] = memory_type
                    all_memories.append(memory)
            except Exception as e:
                logger.error(f"从{memory_type}记忆检索失败: {e}")
        
        # 记忆融合和排序
        fused_memories = await self._fuse_and_rank_memories(
            all_memories, query, context
        )
        
        return fused_memories[:max_results]
    
    async def _calculate_attention_score(self, experience: Dict[str, Any]) -> float:
        """
        计算注意力分数
        
        注意力机制基于:
        1. 新颖性:信息的新颖程度
        2. 相关性:与当前目标的相关程度
        3. 紧急性:信息的时间敏感性
        4. 情感强度:体验的情感冲击
        """
        
        content = experience["content"]
        
        # 新颖性评估
        novelty_score = await self._assess_novelty(content)
        
        # 相关性评估
        relevance_score = await self._assess_relevance(content)
        
        # 紧急性评估
        urgency_score = await self._assess_urgency(content)
        
        # 情感强度评估
        emotional_score = await self._assess_emotional_intensity(content)
        
        # 加权计算注意力分数
        attention_score = (
            novelty_score * 0.3 +
            relevance_score * 0.4 +
            urgency_score * 0.2 +
            emotional_score * 0.1
        )
        
        return min(1.0, max(0.0, attention_score))
    
    async def _evaluate_importance(self, experience: Dict[str, Any]) -> float:
        """
        评估记忆重要性
        
        重要性维度:
        1. 目标相关性:对实现目标的重要程度
        2. 学习价值:对未来决策的参考价值
        3. 独特性:信息的稀有程度
        4. 影响范围:对系统行为的影响程度
        """
        
        content = experience["content"]
        hints = experience.get("importance_hints", {})
        
        # 目标相关性
        goal_relevance = hints.get("goal_relevance", 0.5)
        
        # 学习价值
        learning_value = await self._assess_learning_value(content)
        
        # 独特性
        uniqueness = await self._assess_uniqueness(content)
        
        # 影响范围
        impact_scope = hints.get("impact_scope", 0.5)
        
        # 计算综合重要性
        importance_score = (
            goal_relevance * 0.35 +
            learning_value * 0.25 +
            uniqueness * 0.2 +
            impact_scope * 0.2
        )
        
        return min(1.0, max(0.0, importance_score))

class WorkingMemoryManager:
    """
    工作记忆管理器
    
    模拟人类工作记忆的特性:
    1. 有限容量(7±2原则)
    2. 快速访问
    3. 主动维护
    4. 干扰遗忘
    """
    
    def __init__(self, capacity: int = 7, attention_span: int = 300):
        self.capacity = capacity
        self.attention_span = attention_span  # 注意力保持时间(秒)
        
        self.active_items: List[Dict[str, Any]] = []
        self.access_times: Dict[str, float] = {}
        
    async def add(self, item: Dict[str, Any]) -> bool:
        """
        添加项目到工作记忆
        
        添加策略:
        1. 检查容量限制
        2. 移除最久未访问的项目
        3. 添加新项目
        4. 更新访问时间
        """
        
        item_id = item["id"]
        current_time = time.time()
        
        # 检查是否已存在
        existing_item = next(
            (item for item in self.active_items if item["id"] == item_id),
            None
        )
        
        if existing_item:
            # 更新现有项目
            existing_item.update(item)
            self.access_times[item_id] = current_time
            return True
        
        # 检查容量限制
        if len(self.active_items) >= self.capacity:
            # 移除最久未访问的项目
            oldest_id = min(self.access_times.keys(), key=lambda k: self.access_times[k])
            await self._remove_item(oldest_id)
        
        # 添加新项目
        self.active_items.append(item)
        self.access_times[item_id] = current_time
        
        logger.debug(f"工作记忆添加项目: {item_id}")
        return True
    
    async def retrieve(self, query: str, context: Dict[str, Any] = None) -> List[Dict[str, Any]]:
        """从工作记忆检索信息"""
        
        current_time = time.time()
        relevant_items = []
        
        for item in self.active_items:
            # 检查是否在注意力保持时间内
            last_access = self.access_times.get(item["id"], 0)
            if current_time - last_access > self.attention_span:
                continue
            
            # 计算相关性
            relevance_score = await self._calculate_relevance(item, query, context)
            
            if relevance_score > 0.3:  # 相关性阈值
                item_with_score = {
                    **item,
                    "relevance_score": relevance_score,
                    "memory_type": "working",
                }
                relevant_items.append(item_with_score)
                
                # 更新访问时间
                self.access_times[item["id"]] = current_time
        
        # 按相关性排序
        relevant_items.sort(key=lambda x: x["relevance_score"], reverse=True)
        
        return relevant_items
    
    async def _remove_item(self, item_id: str):
        """移除工作记忆项目"""
        
        self.active_items = [
            item for item in self.active_items 
            if item["id"] != item_id
        ]
        self.access_times.pop(item_id, None)
        
        logger.debug(f"工作记忆移除项目: {item_id}")
    
    async def _calculate_relevance(
        self, 
        item: Dict[str, Any], 
        query: str, 
        context: Dict[str, Any] = None
    ) -> float:
        """计算项目与查询的相关性"""
        
        # 简化的相关性计算
        # 实际可以使用语义相似度模型
        
        item_text = str(item.get("content", ""))
        query_lower = query.lower()
        item_lower = item_text.lower()
        
        # 关键词匹配
        query_words = set(query_lower.split())
        item_words = set(item_lower.split())
        
        word_overlap = len(query_words & item_words)
        total_words = len(query_words | item_words)
        
        if total_words == 0:
            return 0.0
        
        keyword_relevance = word_overlap / total_words
        
        # 上下文相关性
        context_relevance = 0.5  # 简化处理
        if context:
            # 这里可以实现更复杂的上下文匹配
            pass
        
        # 时间相关性(最近的记忆更相关)
        time_diff = time.time() - item.get("timestamp", 0)
        time_relevance = max(0, 1 - time_diff / 3600)  # 1小时内线性衰减
        
        # 综合相关性
        overall_relevance = (
            keyword_relevance * 0.5 +
            context_relevance * 0.3 +
            time_relevance * 0.2
        )
        
        return overall_relevance

class MemoryConsolidationScheduler:
    """记忆整理调度器"""
    
    def __init__(self):
        self.consolidation_intervals = {
            "immediate": 60,      # 1分钟后立即整理
            "short_term": 3600,   # 1小时后短期整理
            "daily": 86400,       # 24小时后日常整理
            "weekly": 604800,     # 7天后周期整理
        }
        
        self.last_consolidation = {
            interval: 0 for interval in self.consolidation_intervals.keys()
        }
    
    async def schedule_consolidation(self, memory_system: 'IntelligentMemorySystem'):
        """调度记忆整理任务"""
        
        current_time = time.time()
        
        for interval_type, interval_seconds in self.consolidation_intervals.items():
            last_time = self.last_consolidation[interval_type]
            
            if current_time - last_time >= interval_seconds:
                # 执行对应类型的记忆整理
                await self._perform_consolidation(memory_system, interval_type)
                self.last_consolidation[interval_type] = current_time
    
    async def _perform_consolidation(
        self, 
        memory_system: 'IntelligentMemorySystem',
        consolidation_type: str
    ):
        """执行记忆整理"""
        
        logger.info(f"开始执行 {consolidation_type} 记忆整理")
        
        if consolidation_type == "immediate":
            # 立即整理:从感觉记忆提升到工作记忆
            await self._immediate_consolidation(memory_system)
            
        elif consolidation_type == "short_term":
            # 短期整理:从工作记忆提升到短期记忆
            await self._short_term_consolidation(memory_system)
            
        elif consolidation_type == "daily":
            # 日常整理:从短期记忆提升到长期记忆
            await self._daily_consolidation(memory_system)
            
        elif consolidation_type == "weekly":
            # 周期整理:记忆压缩和重组
            await self._weekly_consolidation(memory_system)
    
    async def _daily_consolidation(self, memory_system: 'IntelligentMemorySystem'):
        """日常记忆整理"""
        
        # 从短期记忆中选择重要记忆提升到长期记忆
        short_term_memories = await memory_system.short_term_memory.get_all()
        
        promotion_candidates = []
        for memory in short_term_memories:
            # 重新评估重要性
            current_importance = await memory_system._evaluate_importance(memory)
            access_frequency = memory.get("access_count", 0)
            
            # 综合评分
            promotion_score = current_importance * 0.7 + (access_frequency / 10) * 0.3
            
            if promotion_score > 0.6:
                promotion_candidates.append((memory, promotion_score))
        
        # 按分数排序,提升最重要的记忆
        promotion_candidates.sort(key=lambda x: x[1], reverse=True)
        
        for memory, score in promotion_candidates[:20]:  # 最多提升20个记忆
            await memory_system.long_term_memory.store(memory)
            await memory_system.short_term_memory.remove(memory["id"])
            
            logger.debug(f"记忆提升到长期存储: {memory['id']} (分数: {score:.2f})")

4. 分层任务规划系统

4.1 HTN任务网络架构

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# /autogpt_platform/backend/backend/blocks/task_planning.py

class HierarchicalTaskNetwork:
    """
    分层任务网络 (HTN) 规划器
    
    基于网上深度技术文章的HTN算法实现
    
    特性:
    1. 递归任务分解
    2. 方法选择和应用
    3. 约束满足求解
    4. 动态重规划
    """
    
    def __init__(self):
        self.domain_knowledge = TaskDomainKnowledge()
        self.method_library = TaskMethodLibrary()
        self.constraint_solver = ConstraintSolver()
        
    async def plan_task_execution(
        self,
        high_level_task: str,
        initial_state: Dict[str, Any],
        resources: Dict[str, Any],
        constraints: List[Dict[str, Any]] = None
    ) -> Dict[str, Any]:
        """
        制定分层任务执行计划
        
        HTN规划算法:
        1. 任务分解:将复合任务分解为子任务
        2. 方法选择:为每个任务选择合适的执行方法
        3. 约束检查:验证计划的可行性
        4. 优化调整:优化执行顺序和资源分配
        
        参数:
            high_level_task: 高层任务描述
            initial_state: 初始状态
            resources: 可用资源
            constraints: 约束条件
            
        返回:
            分层执行计划
        """
        
        logger.info(f"开始HTN任务规划: {high_level_task}")
        
        planning_context = {
            "task": high_level_task,
            "state": initial_state.copy(),
            "resources": resources,
            "constraints": constraints or [],
            "planning_depth": 0,
            "max_depth": 10,
        }
        
        try:
            # 递归任务分解
            task_network = await self._recursive_task_decomposition(
                high_level_task, planning_context
            )
            
            # 方法选择和绑定
            method_bindings = await self._select_and_bind_methods(
                task_network, planning_context
            )
            
            # 约束满足求解
            constraint_solution = await self.constraint_solver.solve(
                method_bindings, planning_context["constraints"]
            )
            
            if not constraint_solution["satisfiable"]:
                raise PlanningException("约束条件无法满足,规划失败")
            
            # 生成最终执行计划
            execution_plan = await self._generate_execution_plan(
                task_network, method_bindings, constraint_solution
            )
            
            # 计划优化
            optimized_plan = await self._optimize_execution_plan(execution_plan)
            
            return {
                "success": True,
                "task": high_level_task,
                "task_network": task_network,
                "execution_plan": optimized_plan,
                "estimated_duration": optimized_plan["total_duration"],
                "resource_requirements": optimized_plan["resource_summary"],
                "planning_quality": await self._assess_plan_quality(optimized_plan),
            }
            
        except Exception as e:
            logger.error(f"HTN任务规划失败: {e}")
            return {
                "success": False,
                "error": str(e),
                "partial_plan": planning_context.get("partial_plan"),
            }
    
    async def _recursive_task_decomposition(
        self,
        task: str,
        context: Dict[str, Any],
        current_depth: int = 0
    ) -> Dict[str, Any]:
        """
        递归任务分解
        
        分解策略:
        1. 检查任务是否为原子任务
        2. 查找适用的分解方法
        3. 应用分解方法生成子任务
        4. 递归分解子任务
        """
        
        if current_depth >= context["max_depth"]:
            # 达到最大深度,视为原子任务
            return {
                "task": task,
                "type": "atomic",
                "depth": current_depth,
                "executable": True,
            }
        
        # 检查是否为原子任务
        if await self.domain_knowledge.is_atomic_task(task):
            return {
                "task": task,
                "type": "atomic", 
                "depth": current_depth,
                "executable": True,
            }
        
        # 查找分解方法
        decomposition_methods = await self.method_library.find_decomposition_methods(
            task, context
        )
        
        if not decomposition_methods:
            # 无法分解,视为原子任务
            logger.warning(f"无法找到任务分解方法: {task}")
            return {
                "task": task,
                "type": "atomic",
                "depth": current_depth,
                "executable": False,  # 标记为不可执行
                "reason": "无分解方法",
            }
        
        # 选择最佳分解方法
        best_method = await self._select_best_decomposition_method(
            decomposition_methods, context
        )
        
        # 应用分解方法
        subtasks = await best_method.apply(task, context)
        
        # 递归分解子任务
        decomposed_subtasks = []
        for subtask in subtasks:
            subtask_decomposition = await self._recursive_task_decomposition(
                subtask["task"],
                {**context, "parent_task": task},
                current_depth + 1
            )
            decomposed_subtasks.append(subtask_decomposition)
        
        return {
            "task": task,
            "type": "composite",
            "depth": current_depth,
            "decomposition_method": best_method.name,
            "subtasks": decomposed_subtasks,
            "executable": all(
                subtask.get("executable", False) 
                for subtask in decomposed_subtasks
            ),
        }
    
    async def _select_best_decomposition_method(
        self,
        methods: List['DecompositionMethod'],
        context: Dict[str, Any]
    ) -> 'DecompositionMethod':
        """选择最佳分解方法"""
        
        if len(methods) == 1:
            return methods[0]
        
        # 评估每个方法的适用性
        method_scores = []
        
        for method in methods:
            # 评估方法的适用性
            applicability = await method.evaluate_applicability(context)
            
            # 评估方法的效率
            efficiency = await method.estimate_efficiency(context)
            
            # 评估方法的可靠性
            reliability = await method.assess_reliability(context)
            
            # 综合评分
            total_score = (
                applicability * 0.4 +
                efficiency * 0.3 +
                reliability * 0.3
            )
            
            method_scores.append((method, total_score))
        
        # 选择得分最高的方法
        best_method, best_score = max(method_scores, key=lambda x: x[1])
        
        logger.debug(f"选择分解方法: {best_method.name} (得分: {best_score:.2f})")
        
        return best_method

class TaskDomainKnowledge:
    """任务领域知识库"""
    
    def __init__(self):
        # 原子任务模式
        self.atomic_task_patterns = {
            r'发送.*邮件': "email_send",
            r'下载.*文件': "file_download", 
            r'创建.*文件夹': "directory_create",
            r'搜索.*信息': "web_search",
            r'分析.*数据': "data_analysis",
        }
        
        # 任务复杂度模型
        self.complexity_indicators = {
            "high": ["分析", "研究", "设计", "创造"],
            "medium": ["整理", "转换", "合并", "比较"],
            "low": ["复制", "移动", "删除", "查看"],
        }
    
    async def is_atomic_task(self, task: str) -> bool:
        """判断是否为原子任务"""
        
        import re
        
        for pattern, task_type in self.atomic_task_patterns.items():
            if re.search(pattern, task):
                return True
        
        # 基于复杂度判断
        complexity = await self._assess_task_complexity(task)
        return complexity < 3  # 复杂度小于3视为原子任务
    
    async def _assess_task_complexity(self, task: str) -> int:
        """评估任务复杂度"""
        
        task_lower = task.lower()
        complexity_score = 1  # 基础复杂度
        
        # 检查复杂度指示词
        for level, indicators in self.complexity_indicators.items():
            for indicator in indicators:
                if indicator in task_lower:
                    if level == "high":
                        complexity_score += 3
                    elif level == "medium":
                        complexity_score += 2
                    else:
                        complexity_score += 1
                    break
        
        # 检查任务长度(字数)
        word_count = len(task.split())
        if word_count > 20:
            complexity_score += 2
        elif word_count > 10:
            complexity_score += 1
        
        return min(10, complexity_score)

class DecompositionMethod:
    """任务分解方法基类"""
    
    def __init__(self, name: str, description: str):
        self.name = name
        self.description = description
    
    async def apply(self, task: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
        """应用分解方法"""
        raise NotImplementedError("子类需要实现apply方法")
    
    async def evaluate_applicability(self, context: Dict[str, Any]) -> float:
        """评估方法适用性"""
        return 0.5  # 默认中等适用性
    
    async def estimate_efficiency(self, context: Dict[str, Any]) -> float:
        """估算方法效率"""
        return 0.5  # 默认中等效率
    
    async def assess_reliability(self, context: Dict[str, Any]) -> float:
        """评估方法可靠性"""
        return 0.5  # 默认中等可靠性

class FunctionalDecompositionMethod(DecompositionMethod):
    """功能性分解方法"""
    
    def __init__(self):
        super().__init__(
            name="functional_decomposition",
            description="按功能模块进行任务分解"
        )
    
    async def apply(self, task: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        功能性分解实现
        
        将复杂任务按功能模块分解为独立的子任务
        """
        
        # 使用LLM进行功能性分解
        decomposition_prompt = f"""
请将以下任务按功能模块进行分解:

任务:{task}

分解原则:
1. 每个子任务应该对应一个独立的功能模块
2. 子任务之间应该相对独立,减少耦合
3. 每个子任务都应该有明确的输入和输出
4. 考虑功能的复用性和模块化

请输出3-7个子任务:
1. [子任务1] - 功能:[功能描述]
2. [子任务2] - 功能:[功能描述]
...
"""
        
        # 这里需要实际的LLM调用
        # 简化返回示例结果
        return [
            {
                "task": f"{task} - 数据收集模块",
                "function": "data_collection",
                "dependencies": [],
                "estimated_duration": 300,
            },
            {
                "task": f"{task} - 数据处理模块", 
                "function": "data_processing",
                "dependencies": ["data_collection"],
                "estimated_duration": 600,
            },
            {
                "task": f"{task} - 结果输出模块",
                "function": "result_output",
                "dependencies": ["data_processing"],
                "estimated_duration": 200,
            },
        ]

总结

AutoGPT AI Agent通过实现ReAct推理框架、多模态智能处理、分层记忆管理和HTN任务规划等核心技术,构建了接近人类认知水平的智能行为能力。结合网上深度技术文章的研究成果,其核心技术优势包括:

核心技术突破

  1. ReAct推理框架:实现思考-行动-观察-反思的完整认知循环
  2. 多模态智能体:支持文本、图像、音频、视频的跨模态理解
  3. 分层记忆系统:模拟人类记忆机制的智能存储和检索
  4. HTN任务规划:递归分解和约束满足的智能规划算法
  5. 自适应学习:从经验中持续学习和策略优化

技术创新点

  1. 上下文感知决策:基于环境和历史的智能决策机制
  2. 注意力机制:模拟人类注意力的信息筛选和聚焦
  3. 元认知能力:对自身推理过程的监控和调整
  4. 跨模态融合:多种感知模态的协同理解和处理
  5. 动态重规划:根据执行结果实时调整策略

实践应用价值

这些核心技术不仅为AutoGPT平台提供了强大的智能基础,也为整个AI Agent领域的发展提供了宝贵的参考实现。通过深度整合大语言模型能力和传统AI规划算法,AutoGPT展现了下一代智能系统的技术路径和巨大潜力。

Agent技术的成功关键在于认知架构的合理设计、推理机制的高效实现,以及学习能力的持续增强。这种技术路径为构建真正智能化的AI系统奠定了重要基础。