1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
| class AssistantAgent(BaseChatAgent, Component[AssistantAgentConfig]):
"""助手代理 - 支持工具使用的智能助手"""
component_config_schema = AssistantAgentConfig
def __init__(
self,
name: str,
model_client: ChatCompletionClient,
tools: List[BaseTool[Any, Any] | Callable[..., Any]] | None = None,
workbench: Workbench | Sequence[Workbench] | None = None,
handoffs: List[HandoffBase | str] | None = None,
model_context: ChatCompletionContext | None = None,
description: str = "一个有用的助手代理",
system_message: str | None = None,
model_client_stream: bool = False,
reflect_on_tool_use: bool | None = None,
output_content_type: type[BaseModel] | None = None,
max_tool_iterations: int = 1,
tool_call_summary_format: str = "{result}",
tool_call_summary_formatter: Callable[[FunctionCall, FunctionExecutionResult], str] | None = None,
**kwargs: Any,
) -> None:
super().__init__(name, description)
self._model_client = model_client
self._tools = self._prepare_tools(tools or [])
self._workbench = workbench
self._handoffs = self._prepare_handoffs(handoffs or [])
self._model_context = model_context or UnboundedChatCompletionContext()
self._system_message = system_message
self._model_client_stream = model_client_stream
self._reflect_on_tool_use = reflect_on_tool_use
self._output_content_type = output_content_type
self._max_tool_iterations = max_tool_iterations
self._tool_call_summary_format = tool_call_summary_format
self._tool_call_summary_formatter = tool_call_summary_formatter
# 验证配置
if max_tool_iterations < 1:
raise ValueError("max_tool_iterations 必须大于等于1")
if tools and workbench:
raise ValueError("不能同时设置 tools 和 workbench")
# 设置默认的reflect_on_tool_use
if self._reflect_on_tool_use is None:
self._reflect_on_tool_use = output_content_type is not None
@property
def produced_message_types(self) -> Sequence[type[BaseChatMessage]]:
"""返回可产生的消息类型"""
types = [TextMessage, ToolCallMessage, ToolCallResultMessage]
if self._handoffs:
types.append(HandoffMessage)
if self._output_content_type:
types.append(StructuredMessage)
return types
async def on_messages(
self,
messages: Sequence[BaseChatMessage],
cancellation_token: CancellationToken,
) -> Response:
"""处理消息的核心实现"""
with trace_invoke_agent_span(agent_name=self.name):
# 将新消息添加到上下文
for message in messages:
self._model_context.add_message(message.to_model_message())
# 执行推理循环
inner_messages: List[BaseAgentEvent | BaseChatMessage] = []
for iteration in range(self._max_tool_iterations):
# 模型推理
llm_messages = self._prepare_model_messages()
if self._model_client_stream:
# 流式推理(在同步方法中收集所有chunks)
chunks = []
async for chunk in self._model_client.create_stream(
llm_messages,
tools=self._tools,
cancellation_token=cancellation_token
):
chunks.append(chunk)
completion = self._combine_streaming_chunks(chunks)
else:
# 同步推理
completion = await self._model_client.create(
llm_messages,
tools=self._tools,
cancellation_token=cancellation_token
)
# 处理完成结果
response_message, should_continue = await self._process_completion(
completion, inner_messages, cancellation_token
)
if not should_continue:
# 添加响应到上下文
if response_message:
assistant_message = AssistantMessage(
content=response_message.content,
source=self.name
)
self._model_context.add_message(assistant_message)
return Response(
chat_message=response_message,
inner_messages=inner_messages
)
# 达到最大迭代次数
raise RuntimeError(f"达到最大工具迭代次数 {self._max_tool_iterations}")
def on_messages_stream(
self,
messages: Sequence[BaseChatMessage],
cancellation_token: CancellationToken,
) -> AsyncGenerator[BaseAgentEvent | BaseChatMessage | Response, None]:
"""流式消息处理"""
return self._on_messages_stream_impl(messages, cancellation_token)
async def _on_messages_stream_impl(
self,
messages: Sequence[BaseChatMessage],
cancellation_token: CancellationToken,
) -> AsyncGenerator[BaseAgentEvent | BaseChatMessage | Response, None]:
"""流式处理实现"""
# 将新消息添加到上下文
for message in messages:
self._model_context.add_message(message.to_model_message())
inner_messages: List[BaseAgentEvent | BaseChatMessage] = []
for iteration in range(self._max_tool_iterations):
# 准备模型消息
llm_messages = self._prepare_model_messages()
if self._model_client_stream:
# 流式推理
completion_chunks = []
async for chunk in self._model_client.create_stream(
llm_messages,
tools=self._tools,
cancellation_token=cancellation_token
):
# 发送流式chunk事件
chunk_event = ModelClientStreamingChunkEvent(
source=self.name,
content=chunk.content or "",
models_usage=chunk.usage
)
yield chunk_event
completion_chunks.append(chunk)
# 合并所有chunks
completion = self._combine_streaming_chunks(completion_chunks)
else:
# 非流式推理
completion = await self._model_client.create(
llm_messages,
tools=self._tools,
cancellation_token=cancellation_token
)
# 处理完成结果
response_message, should_continue = await self._process_completion(
completion, inner_messages, cancellation_token
)
# 发送内部消息
for inner_msg in inner_messages[len(inner_messages) - (1 if response_message else 0):]:
yield inner_msg
if not should_continue:
# 添加响应到上下文
if response_message:
assistant_message = AssistantMessage(
content=response_message.content,
source=self.name
)
self._model_context.add_message(assistant_message)
yield Response(
chat_message=response_message,
inner_messages=inner_messages
)
return
raise RuntimeError(f"达到最大工具迭代次数 {self._max_tool_iterations}")
async def _process_completion(
self,
completion: ChatCompletionResponse,
inner_messages: List[BaseAgentEvent | BaseChatMessage],
cancellation_token: CancellationToken,
) -> tuple[BaseChatMessage, bool]:
"""处理模型完成结果"""
# 检查是否有工具调用
if completion.content and hasattr(completion.content, 'tool_calls'):
tool_calls = completion.content.tool_calls
if tool_calls:
return await self._handle_tool_calls(
tool_calls, inner_messages, cancellation_token
)
# 检查是否有切换请求
handoff = self._detect_handoff(completion.content)
if handoff:
return await self._handle_handoff(handoff, inner_messages)
# 普通文本响应
content = completion.content if isinstance(completion.content, str) else str(completion.content)
if self._output_content_type and self._reflect_on_tool_use:
# 结构化输出
try:
structured_content = self._parse_structured_output(content)
response_message = StructuredMessage(
source=self.name,
content=structured_content,
models_usage=completion.usage
)
except Exception as e:
logger.warning(f"结构化输出解析失败: {e}")
response_message = TextMessage(
source=self.name,
content=content,
models_usage=completion.usage
)
else:
# 文本输出
response_message = TextMessage(
source=self.name,
content=content,
models_usage=completion.usage
)
return response_message, False # 不继续迭代
async def _handle_tool_calls(
self,
tool_calls: List[FunctionCall],
inner_messages: List[BaseAgentEvent | BaseChatMessage],
cancellation_token: CancellationToken,
) -> tuple[BaseChatMessage, bool]:
"""处理工具调用"""
# 创建工具调用消息
tool_call_message = ToolCallMessage(
source=self.name,
tool_calls=tool_calls
)
inner_messages.append(tool_call_message)
# 并发执行工具调用
results = await asyncio.gather(
*[self._execute_tool_call(call, cancellation_token) for call in tool_calls],
return_exceptions=True
)
# 处理结果
tool_results = []
for i, result in enumerate(results):
if isinstance(result, Exception):
tool_results.append(FunctionExecutionResult(
call_id=tool_calls[i].id,
content=f"工具调用失败: {str(result)}",
is_error=True
))
else:
tool_results.append(result)
# 创建结果消息
result_message = ToolCallResultMessage(
source=self.name,
tool_call_results=tool_results
)
inner_messages.append(result_message)
# 添加结果到模型上下文
for result in tool_results:
self._model_context.add_message(ToolResultMessage(
content=result.content,
call_id=result.call_id
))
if self._reflect_on_tool_use:
# 继续迭代,让模型基于工具结果生成最终响应
return result_message, True
else:
# 直接返回工具调用摘要
summary_content = self._create_tool_call_summary(tool_calls, tool_results)
summary_message = TextMessage(
source=self.name,
content=summary_content
)
return summary_message, False
def _create_tool_call_summary(
self,
tool_calls: List[FunctionCall],
results: List[FunctionExecutionResult],
) -> str:
"""创建工具调用摘要"""
summaries = []
for call, result in zip(tool_calls, results):
if self._tool_call_summary_formatter:
# 使用自定义格式化器
summary = self._tool_call_summary_formatter(call, result)
else:
# 使用格式化模板
summary = self._tool_call_summary_format.format(
tool_name=call.name,
arguments=call.arguments,
result=result.content,
is_error=result.is_error
)
summaries.append(summary)
return "\n".join(summaries)
|