概述

本指南提供了AutoGen系统故障排查和调试的完整方法论,涵盖从基础问题定位到复杂性能调优的各个方面,帮助开发者和运维人员快速解决生产环境中的各类问题。

1. 故障排查方法论

1.1 问题分类框架

graph TB subgraph "AutoGen 故障分类体系" subgraph "基础设施问题" NET[网络连接问题] STORAGE[存储访问问题] RESOURCE[资源不足问题] CONFIG[配置错误问题] end subgraph "运行时问题" AGENT[代理创建失败] MSG[消息传递错误] STATE[状态同步问题] PERF[性能瓶颈问题] end subgraph "应用层问题" LOGIC[业务逻辑错误] TOOL[工具执行失败] MODEL[模型调用问题] TIMEOUT[超时问题] end subgraph "集成问题" API[外部API问题] DB[数据库连接问题] CACHE[缓存服务问题] QUEUE[消息队列问题] end end style NET fill:#e1f5fe style AGENT fill:#f3e5f5 style LOGIC fill:#e8f5e8 style API fill:#fff3e0

1.2 诊断流程

flowchart TD A[问题报告] --> B{问题分类} B -->|基础设施| C[检查网络和资源] B -->|运行时| D[检查代理和消息] B -->|应用层| E[检查业务逻辑] B -->|集成| F[检查外部服务] C --> G[收集基础设施日志] D --> H[收集运行时日志] E --> I[收集应用日志] F --> J[收集集成日志] G --> K[分析网络连接] H --> L[分析消息流转] I --> M[分析业务流程] J --> N[分析外部调用] K --> O{根因确定?} L --> O M --> O N --> O O -->|是| P[实施解决方案] O -->|否| Q[深度分析和专家介入] P --> R[验证修复效果] Q --> S[创建详细报告] R --> T{问题解决?} T -->|是| U[结案并总结] T -->|否| V[重新评估] V --> B

2. 常见问题诊断

2.1 代理无法创建或启动

问题症状

  • 代理工厂注册失败
  • 代理实例化异常
  • 代理启动后立即退出

诊断工具

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
class AgentDiagnosticTool:
    """代理诊断工具 - 快速定位代理创建和启动问题"""
    
    async def diagnose_agent_creation_failure(self, agent_type: str, error: Exception) -> DiagnosisReport:
        """
        诊断代理创建失败问题
        
        Args:
            agent_type: 代理类型
            error: 错误异常
            
        Returns:
            DiagnosisReport: 诊断报告
        """
        
        diagnosis = DiagnosisReport(
            problem_type="agent_creation_failure",
            agent_type=agent_type,
            error_message=str(error)
        )
        
        # 1. 检查工厂函数注册
        factory_check = await self._check_factory_registration(agent_type)
        diagnosis.add_check("工厂函数注册", factory_check)
        
        # 2. 检查依赖项
        dependency_check = await self._check_dependencies(agent_type, error)
        diagnosis.add_check("依赖项检查", dependency_check)
        
        # 3. 检查权限
        permission_check = await self._check_permissions(agent_type)
        diagnosis.add_check("权限检查", permission_check)
        
        # 4. 检查资源
        resource_check = await self._check_resource_availability()
        diagnosis.add_check("资源可用性", resource_check)
        
        # 5. 生成解决建议
        diagnosis.recommendations = await self._generate_recommendations(diagnosis)
        
        return diagnosis
    
    async def _check_factory_registration(self, agent_type: str) -> CheckResult:
        """检查代理工厂是否正确注册"""
        
        try:
            # 检查运行时中是否有对应的工厂函数
            runtime = self._get_current_runtime()
            if not runtime:
                return CheckResult(
                    passed=False,
                    message="无法获取当前运行时实例"
                )
            
            factories = getattr(runtime, '_agent_factories', {})
            if agent_type not in factories:
                return CheckResult(
                    passed=False,
                    message=f"代理类型 '{agent_type}' 未注册工厂函数",
                    suggestion="使用 runtime.register_factory() 注册代理工厂"
                )
            
            # 检查工厂函数是否可调用
            factory_func = factories[agent_type]
            if not callable(factory_func):
                return CheckResult(
                    passed=False,
                    message="工厂函数不可调用",
                    suggestion="确保工厂函数是有效的可调用对象"
                )
            
            return CheckResult(
                passed=True,
                message="工厂函数注册正常"
            )
        
        except Exception as e:
            return CheckResult(
                passed=False,
                message=f"检查工厂注册时发生错误: {e}"
            )
    
    async def _check_dependencies(self, agent_type: str, error: Exception) -> CheckResult:
        """检查代理依赖项"""
        
        # 分析错误信息中的依赖问题
        error_message = str(error).lower()
        
        common_dependency_issues = [
            {
                'pattern': 'no module named',
                'issue': '缺少Python模块',
                'solution': '安装缺少的依赖包: pip install <module_name>'
            },
            {
                'pattern': 'connection refused',
                'issue': '外部服务连接失败',
                'solution': '检查外部服务状态和网络连接'
            },
            {
                'pattern': 'permission denied',
                'issue': '权限不足',
                'solution': '检查文件权限或API访问权限'
            },
            {
                'pattern': 'timeout',
                'issue': '连接或操作超时',
                'solution': '增加超时时间或检查网络延迟'
            }
        ]
        
        for issue_pattern in common_dependency_issues:
            if issue_pattern['pattern'] in error_message:
                return CheckResult(
                    passed=False,
                    message=f"检测到依赖问题: {issue_pattern['issue']}",
                    suggestion=issue_pattern['solution']
                )
        
        # 检查常见的Python导入问题
        if 'import' in error_message or 'module' in error_message:
            missing_modules = await self._identify_missing_modules(error)
            if missing_modules:
                return CheckResult(
                    passed=False,
                    message=f"缺少依赖模块: {', '.join(missing_modules)}",
                    suggestion=f"运行: pip install {' '.join(missing_modules)}"
                )
        
        return CheckResult(
            passed=True,
            message="未发现明显的依赖问题"
        )

# 使用示例
async def diagnose_agent_problem():
    """代理问题诊断示例"""
    
    diagnostic_tool = AgentDiagnosticTool()
    
    try:
        # 尝试创建代理
        agent = await create_problematic_agent()
    except Exception as e:
        # 诊断失败原因
        diagnosis = await diagnostic_tool.diagnose_agent_creation_failure("ChatAgent", e)
        
        # 打印诊断报告
        print("=== 代理创建失败诊断报告 ===")
        print(f"问题类型: {diagnosis.problem_type}")
        print(f"错误信息: {diagnosis.error_message}")
        
        for check_name, result in diagnosis.checks.items():
            status = "✅ 通过" if result.passed else "❌ 失败"
            print(f"{check_name}: {status} - {result.message}")
            if not result.passed and result.suggestion:
                print(f"  建议: {result.suggestion}")
        
        print("\n推荐解决方案:")
        for i, recommendation in enumerate(diagnosis.recommendations, 1):
            print(f"{i}. {recommendation}")

2.2 消息传递问题

诊断工具

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
class MessageDiagnosticTool:
    """消息传递诊断工具"""
    
    async def diagnose_message_delivery_failure(
        self, 
        sender: AgentId, 
        recipient: AgentId, 
        message: Any, 
        error: Exception
    ) -> MessageDiagnosisReport:
        """诊断消息传递失败"""
        
        diagnosis = MessageDiagnosisReport(
            sender=sender,
            recipient=recipient,
            message_type=type(message).__name__,
            error=str(error)
        )
        
        # 1. 检查代理是否存在
        sender_exists = await self._check_agent_exists(sender)
        recipient_exists = await self._check_agent_exists(recipient)
        
        diagnosis.add_check("发送方代理存在性", sender_exists)
        diagnosis.add_check("接收方代理存在性", recipient_exists)
        
        # 2. 检查网络连接
        if isinstance(error, (ConnectionError, TimeoutError)):
            network_check = await self._diagnose_network_issue(sender, recipient)
            diagnosis.add_check("网络连接", network_check)
        
        # 3. 检查序列化问题
        if "serialize" in str(error).lower():
            serialization_check = await self._check_message_serialization(message)
            diagnosis.add_check("消息序列化", serialization_check)
        
        # 4. 检查权限问题
        if "permission" in str(error).lower() or "auth" in str(error).lower():
            auth_check = await self._check_message_authorization(sender, recipient, message)
            diagnosis.add_check("消息授权", auth_check)
        
        # 5. 检查代理处理能力
        handler_check = await self._check_message_handler(recipient, type(message))
        diagnosis.add_check("消息处理器", handler_check)
        
        return diagnosis
    
    async def _check_agent_exists(self, agent_id: AgentId) -> CheckResult:
        """检查代理是否存在"""
        
        try:
            runtime = self._get_current_runtime()
            
            # 检查代理工厂是否注册
            if hasattr(runtime, '_agent_factories'):
                factories = runtime._agent_factories
                if agent_id.type not in factories:
                    return CheckResult(
                        passed=False,
                        message=f"代理类型 '{agent_id.type}' 未注册",
                        suggestion="使用 register_factory() 注册代理类型"
                    )
            
            # 检查代理实例是否存在
            if hasattr(runtime, '_active_agents'):
                active_agents = runtime._active_agents
                if agent_id in active_agents:
                    return CheckResult(
                        passed=True,
                        message="代理实例存在且活跃"
                    )
                else:
                    return CheckResult(
                        passed=True,
                        message="代理类型已注册,将按需创建实例"
                    )
            
            return CheckResult(
                passed=True,
                message="代理检查通过"
            )
        
        except Exception as e:
            return CheckResult(
                passed=False,
                message=f"检查代理存在性时发生错误: {e}"
            )
    
    async def _diagnose_network_issue(self, sender: AgentId, recipient: AgentId) -> CheckResult:
        """诊断网络连接问题"""
        
        try:
            # 1. 检查基本网络连接
            connectivity_test = await self._test_basic_connectivity()
            if not connectivity_test.passed:
                return connectivity_test
            
            # 2. 检查gRPC连接
            grpc_test = await self._test_grpc_connectivity(recipient)
            if not grpc_test.passed:
                return grpc_test
            
            # 3. 检查DNS解析
            dns_test = await self._test_dns_resolution()
            if not dns_test.passed:
                return dns_test
            
            # 4. 检查防火墙和安全组
            firewall_test = await self._test_firewall_rules()
            if not firewall_test.passed:
                return firewall_test
            
            return CheckResult(
                passed=True,
                message="网络连接正常"
            )
        
        except Exception as e:
            return CheckResult(
                passed=False,
                message=f"网络诊断失败: {e}"
            )
    
    async def _test_grpc_connectivity(self, target_agent: AgentId) -> CheckResult:
        """测试gRPC连接"""
        
        try:
            # 获取目标代理的Worker信息
            registry = self._get_registry_service()
            worker_locations = await registry.find_agent_locations(target_agent)
            
            if not worker_locations:
                return CheckResult(
                    passed=False,
                    message="无法找到目标代理的Worker位置",
                    suggestion="检查代理注册状态"
                )
            
            # 测试gRPC连接
            for location in worker_locations:
                try:
                    channel = grpc.aio.insecure_channel(location.endpoint)
                    stub = AgentRpcStub(channel)
                    
                    # 发送健康检查请求
                    request = HealthCheckRequest()
                    response = await stub.HealthCheck(request, timeout=5.0)
                    
                    await channel.close()
                    
                    return CheckResult(
                        passed=True,
                        message=f"gRPC连接正常: {location.endpoint}"
                    )
                
                except grpc.RpcError as rpc_error:
                    if rpc_error.code() == grpc.StatusCode.DEADLINE_EXCEEDED:
                        return CheckResult(
                            passed=False,
                            message="gRPC连接超时",
                            suggestion="检查网络延迟或增加超时时间"
                        )
                    else:
                        return CheckResult(
                            passed=False,
                            message=f"gRPC错误: {rpc_error.details()}",
                            suggestion="检查gRPC服务状态"
                        )
            
            return CheckResult(
                passed=False,
                message="所有Worker节点gRPC连接失败"
            )
        
        except Exception as e:
            return CheckResult(
                passed=False,
                message=f"gRPC连接测试失败: {e}"
            )

2.3 性能问题诊断

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class PerformanceDiagnosticTool:
    """性能诊断工具"""
    
    async def diagnose_performance_issue(
        self, 
        agent_id: AgentId, 
        performance_metrics: Dict[str, float]
    ) -> PerformanceDiagnosisReport:
        """
        诊断性能问题
        
        Args:
            agent_id: 代理标识
            performance_metrics: 性能指标数据
            
        Returns:
            PerformanceDiagnosisReport: 性能诊断报告
        """
        
        diagnosis = PerformanceDiagnosisReport(agent_id=agent_id)
        
        # 1. 响应时间分析
        response_time = performance_metrics.get('avg_response_time', 0)
        if response_time > 2.0:  # 2秒阈值
            await self._analyze_slow_response(agent_id, response_time, diagnosis)
        
        # 2. 内存使用分析
        memory_usage = performance_metrics.get('memory_usage_mb', 0)
        if memory_usage > 512:  # 512MB阈值
            await self._analyze_high_memory_usage(agent_id, memory_usage, diagnosis)
        
        # 3. CPU使用分析
        cpu_usage = performance_metrics.get('cpu_usage_percent', 0)
        if cpu_usage > 80:  # 80%阈值
            await self._analyze_high_cpu_usage(agent_id, cpu_usage, diagnosis)
        
        # 4. 错误率分析
        error_rate = performance_metrics.get('error_rate', 0)
        if error_rate > 0.05:  # 5%阈值
            await self._analyze_high_error_rate(agent_id, error_rate, diagnosis)
        
        # 5. 并发性分析
        concurrent_requests = performance_metrics.get('concurrent_requests', 0)
        max_concurrency = performance_metrics.get('max_concurrency', 100)
        if concurrent_requests / max_concurrency > 0.9:  # 90%阈值
            await self._analyze_concurrency_bottleneck(agent_id, concurrent_requests, diagnosis)
        
        return diagnosis
    
    async def _analyze_slow_response(
        self, 
        agent_id: AgentId, 
        response_time: float, 
        diagnosis: PerformanceDiagnosisReport
    ) -> None:
        """分析慢响应问题"""
        
        # 1. 检查是否有阻塞操作
        blocking_operations = await self._detect_blocking_operations(agent_id)
        if blocking_operations:
            diagnosis.add_issue(PerformanceIssue(
                category="阻塞操作",
                description=f"检测到阻塞操作: {', '.join(blocking_operations)}",
                impact="高",
                recommendations=[
                    "将同步操作改为异步操作",
                    "使用asyncio.create_task()避免阻塞",
                    "考虑使用线程池处理CPU密集型任务"
                ]
            ))
        
        # 2. 检查外部API调用
        external_calls = await self._analyze_external_api_calls(agent_id)
        if external_calls:
            slow_apis = [call for call in external_calls if call['avg_time'] > 1.0]
            if slow_apis:
                diagnosis.add_issue(PerformanceIssue(
                    category="外部API慢调用",
                    description=f"慢速外部API: {[api['name'] for api in slow_apis]}",
                    impact="中",
                    recommendations=[
                        "增加API调用超时设置",
                        "实现API响应缓存",
                        "考虑异步调用和结果轮询",
                        "联系API提供方优化性能"
                    ]
                ))
        
        # 3. 检查数据库查询
        db_queries = await self._analyze_database_queries(agent_id)
        if db_queries:
            slow_queries = [q for q in db_queries if q['duration'] > 0.5]
            if slow_queries:
                diagnosis.add_issue(PerformanceIssue(
                    category="数据库慢查询",
                    description=f"发现 {len(slow_queries)} 个慢查询",
                    impact="高",
                    recommendations=[
                        "优化SQL查询语句",
                        "添加必要的数据库索引",
                        "使用查询结果缓存",
                        "考虑数据库分片"
                    ]
                ))
    
    async def _analyze_high_memory_usage(
        self, 
        agent_id: AgentId, 
        memory_usage: float, 
        diagnosis: PerformanceDiagnosisReport
    ) -> None:
        """分析高内存使用问题"""
        
        # 1. 检查内存泄漏
        memory_trend = await self._get_memory_usage_trend(agent_id)
        if memory_trend and memory_trend['slope'] > 0.1:  # 内存持续增长
            diagnosis.add_issue(PerformanceIssue(
                category="疑似内存泄漏",
                description=f"内存使用持续增长,当前: {memory_usage}MB",
                impact="严重",
                recommendations=[
                    "检查是否有未关闭的资源(文件、连接等)",
                    "检查缓存是否有过期机制",
                    "使用内存分析工具如memory_profiler",
                    "实现定期的内存清理任务"
                ]
            ))
        
        # 2. 检查大对象缓存
        large_objects = await self._identify_large_cached_objects(agent_id)
        if large_objects:
            total_cache_size = sum(obj['size'] for obj in large_objects)
            diagnosis.add_issue(PerformanceIssue(
                category="大对象缓存",
                description=f"缓存中有大对象,总计: {total_cache_size}MB",
                impact="中",
                recommendations=[
                    "为大对象实现LRU淘汰机制",
                    "考虑将大对象存储到外部存储",
                    "实现分片存储策略",
                    "定期清理过期缓存"
                ]
            ))

3. 调试工具和技术

3.1 分布式调试工具

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class DistributedDebuggingTool:
    """分布式调试工具 - 跨Worker的统一调试接口"""
    
    def __init__(self):
        self.debug_sessions = {}
        self.breakpoints = {}
        self.trace_collectors = {}
    
    async def start_debug_session(
        self, 
        session_id: str, 
        target_agents: List[AgentId],
        debug_config: DebugConfig
    ) -> DebugSession:
        """
        启动分布式调试会话
        
        Args:
            session_id: 调试会话ID
            target_agents: 目标代理列表
            debug_config: 调试配置
            
        Returns:
            DebugSession: 调试会话对象
        """
        
        debug_session = DebugSession(
            session_id=session_id,
            target_agents=target_agents,
            config=debug_config,
            created_at=datetime.utcnow()
        )
        
        # 1. 在所有目标Worker上启用调试模式
        for agent_id in target_agents:
            worker_location = await self._find_agent_worker(agent_id)
            if worker_location:
                await self._enable_debug_mode(worker_location, session_id, debug_config)
        
        # 2. 设置消息拦截
        if debug_config.intercept_messages:
            await self._setup_message_interception(target_agents, session_id)
        
        # 3. 设置断点
        for breakpoint in debug_config.breakpoints:
            await self._set_distributed_breakpoint(breakpoint, session_id)
        
        # 4. 启动日志收集
        if debug_config.collect_logs:
            await self._start_log_collection(target_agents, session_id)
        
        self.debug_sessions[session_id] = debug_session
        
        return debug_session
    
    async def set_breakpoint(
        self, 
        session_id: str, 
        agent_id: AgentId, 
        method_name: str, 
        condition: Optional[str] = None
    ) -> str:
        """设置断点"""
        
        breakpoint_id = f"bp_{uuid.uuid4().hex[:8]}"
        
        breakpoint = Breakpoint(
            id=breakpoint_id,
            session_id=session_id,
            agent_id=agent_id,
            method_name=method_name,
            condition=condition,
            hit_count=0,
            created_at=datetime.utcnow()
        )
        
        # 在目标Worker上设置断点
        worker_location = await self._find_agent_worker(agent_id)
        if worker_location:
            await self._set_remote_breakpoint(worker_location, breakpoint)
        
        self.breakpoints[breakpoint_id] = breakpoint
        
        return breakpoint_id
    
    async def step_through_execution(
        self, 
        session_id: str, 
        agent_id: AgentId, 
        step_type: str = 'step_over'
    ) -> ExecutionStep:
        """单步执行调试"""
        
        worker_location = await self._find_agent_worker(agent_id)
        if not worker_location:
            raise ValueError(f"无法找到代理 {agent_id} 的Worker位置")
        
        # 发送单步执行命令
        step_command = StepCommand(
            session_id=session_id,
            agent_id=agent_id,
            step_type=step_type,
            timestamp=datetime.utcnow()
        )
        
        execution_step = await self._send_step_command(worker_location, step_command)
        
        # 收集执行状态
        execution_step.variables = await self._get_local_variables(worker_location, agent_id)
        execution_step.call_stack = await self._get_call_stack(worker_location, agent_id)
        
        return execution_step
    
    async def inspect_agent_state(self, agent_id: AgentId) -> AgentStateInspection:
        """检查代理状态"""
        
        inspection = AgentStateInspection(agent_id=agent_id)
        
        try:
            # 1. 获取代理基本信息
            basic_info = await self._get_agent_basic_info(agent_id)
            inspection.basic_info = basic_info
            
            # 2. 获取代理状态
            agent_state = await self._get_agent_internal_state(agent_id)
            inspection.internal_state = agent_state
            
            # 3. 获取消息队列状态
            queue_status = await self._get_message_queue_status(agent_id)
            inspection.queue_status = queue_status
            
            # 4. 获取连接状态
            connection_status = await self._get_connection_status(agent_id)
            inspection.connection_status = connection_status
            
            # 5. 获取性能统计
            performance_stats = await self._get_performance_statistics(agent_id)
            inspection.performance_stats = performance_stats
            
        except Exception as e:
            inspection.error = str(e)
        
        return inspection

3.2 日志分析工具

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class LogAnalysisTool:
    """日志分析工具 - 智能分析和模式识别"""
    
    def __init__(self):
        self.log_parsers = {
            'error': ErrorLogParser(),
            'performance': PerformanceLogParser(),
            'security': SecurityLogParser(),
            'business': BusinessLogParser()
        }
        self.pattern_matchers = PatternMatcherRegistry()
        self.ml_classifier = LogClassifier()
    
    async def analyze_logs_for_timeframe(
        self, 
        start_time: datetime, 
        end_time: datetime,
        log_level: str = 'ERROR',
        component_filter: Optional[List[str]] = None
    ) -> LogAnalysisReport:
        """
        分析指定时间范围内的日志
        
        Args:
            start_time: 开始时间
            end_time: 结束时间
            log_level: 日志级别过滤
            component_filter: 组件过滤器
            
        Returns:
            LogAnalysisReport: 日志分析报告
        """
        
        # 1. 收集日志数据
        logs = await self._collect_logs(start_time, end_time, log_level, component_filter)
        
        # 2. 按类型解析日志
        parsed_logs = {}
        for log_type, parser in self.log_parsers.items():
            parsed_logs[log_type] = await parser.parse_logs(logs)
        
        # 3. 错误模式分析
        error_patterns = await self._analyze_error_patterns(parsed_logs['error'])
        
        # 4. 性能问题识别
        performance_issues = await self._identify_performance_issues(parsed_logs['performance'])
        
        # 5. 安全事件检测
        security_events = await self._detect_security_events(parsed_logs['security'])
        
        # 6. 业务指标分析
        business_insights = await self._analyze_business_metrics(parsed_logs['business'])
        
        # 7. 生成分析报告
        report = LogAnalysisReport(
            timeframe=(start_time, end_time),
            total_logs=len(logs),
            error_patterns=error_patterns,
            performance_issues=performance_issues,
            security_events=security_events,
            business_insights=business_insights,
            recommendations=await self._generate_log_recommendations(parsed_logs)
        )
        
        return report
    
    async def _analyze_error_patterns(self, error_logs: List[LogEntry]) -> List[ErrorPattern]:
        """分析错误模式"""
        
        patterns = []
        
        # 1. 按错误类型分组
        error_groups = defaultdict(list)
        for log in error_logs:
            error_type = log.get('error_type', 'Unknown')
            error_groups[error_type].append(log)
        
        # 2. 分析每个错误类型的模式
        for error_type, logs in error_groups.items():
            if len(logs) < 3:  # 忽略偶发错误
                continue
            
            # 时间分布分析
            time_distribution = self._analyze_time_distribution(logs)
            
            # 相关性分析
            correlations = await self._find_error_correlations(logs)
            
            # 影响范围分析
            impact_analysis = await self._analyze_error_impact(logs)
            
            pattern = ErrorPattern(
                error_type=error_type,
                occurrence_count=len(logs),
                time_distribution=time_distribution,
                correlations=correlations,
                impact_analysis=impact_analysis,
                recommended_actions=await self._suggest_error_fixes(error_type, logs)
            )
            
            patterns.append(pattern)
        
        return patterns
    
    async def create_debug_snapshot(self, agent_id: AgentId) -> DebugSnapshot:
        """创建调试快照"""
        
        snapshot = DebugSnapshot(
            agent_id=agent_id,
            timestamp=datetime.utcnow()
        )
        
        try:
            # 1. 收集代理状态
            snapshot.agent_state = await self._capture_agent_state(agent_id)
            
            # 2. 收集内存使用情况
            snapshot.memory_usage = await self._capture_memory_usage(agent_id)
            
            # 3. 收集调用栈
            snapshot.call_stack = await self._capture_call_stack(agent_id)
            
            # 4. 收集活跃连接
            snapshot.active_connections = await self._capture_active_connections(agent_id)
            
            # 5. 收集最近的消息历史
            snapshot.recent_messages = await self._capture_recent_messages(agent_id, limit=50)
            
            # 6. 收集配置信息
            snapshot.configuration = await self._capture_agent_configuration(agent_id)
            
            # 7. 收集环境信息
            snapshot.environment = await self._capture_environment_info(agent_id)
            
        except Exception as e:
            snapshot.error = str(e)
        
        return snapshot

4. 常见问题解决方案

4.1 代理无法启动

问题诊断

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
# 1. 检查代理工厂注册
python -c "
import autogen_core
runtime = autogen_core.SingleThreadedAgentRuntime()
print('已注册的代理类型:', list(runtime._agent_factories.keys()))
"

# 2. 检查依赖包
python -c "
try:
    import autogen_core, autogen_agentchat
    print('核心包正常')
except ImportError as e:
    print('依赖包缺失:', e)
"

# 3. 检查Python版本
python --version  # 需要Python 3.9+

解决方案

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# 常见解决方案模板
async def fix_agent_startup_issues():
    """修复代理启动问题的标准流程"""
    
    # 1. 重新安装依赖
    subprocess.run(['pip', 'install', '--upgrade', 'autogen-core', 'autogen-agentchat'])
    
    # 2. 清理并重新创建运行时
    runtime = SingleThreadedAgentRuntime()
    
    # 3. 正确注册代理工厂
    await runtime.register_factory(
        type="ChatAgent",
        agent_factory=lambda: ChatAgent("修复后的代理"),
        expected_class=ChatAgent
    )
    
    # 4. 测试代理创建
    try:
        agent_id = await runtime.get(AgentType("ChatAgent"))
        print(f"代理创建成功: {agent_id}")
    except Exception as e:
        print(f"代理创建仍然失败: {e}")
        # 进一步诊断...

4.2 消息传递超时

快速诊断

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
async def diagnose_message_timeout():
    """诊断消息传递超时问题"""
    
    # 1. 检查网络延迟
    import ping3
    target_hosts = ['gateway-service', 'worker-node-1', 'worker-node-2']
    
    for host in target_hosts:
        latency = ping3.ping(host)
        if latency is None:
            print(f"❌ {host}: 无法连接")
        elif latency > 0.1:  # 100ms
            print(f"⚠️ {host}: 高延迟 {latency*1000:.1f}ms")
        else:
            print(f"✅ {host}: 正常 {latency*1000:.1f}ms")
    
    # 2. 检查代理负载
    runtime = get_current_runtime()
    active_agents = runtime._active_agents
    
    for agent_id, agent in active_agents.items():
        if hasattr(agent, '_processing_queue'):
            queue_size = agent._processing_queue.qsize()
            if queue_size > 10:
                print(f"⚠️ 代理 {agent_id} 消息队列积压: {queue_size}")
    
    # 3. 检查系统资源
    import psutil
    
    cpu_percent = psutil.cpu_percent(interval=1)
    memory = psutil.virtual_memory()
    
    if cpu_percent > 80:
        print(f"⚠️ CPU使用率过高: {cpu_percent}%")
    
    if memory.percent > 85:
        print(f"⚠️ 内存使用率过高: {memory.percent}%")

解决方案模板

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class TimeoutProblemResolver:
    """超时问题解决器"""
    
    async def resolve_timeout_issue(self, timeout_context: TimeoutContext) -> ResolutionResult:
        """解决超时问题"""
        
        resolution_steps = []
        
        # 1. 增加超时时间
        if timeout_context.current_timeout < 30:
            resolution_steps.append(ResolutionStep(
                action="增加超时时间",
                details=f"将超时时间从 {timeout_context.current_timeout}s 增加到 30s",
                implementation=lambda: self._increase_timeout(timeout_context, 30)
            ))
        
        # 2. 优化网络配置
        if timeout_context.network_latency > 0.1:
            resolution_steps.append(ResolutionStep(
                action="优化网络配置",
                details="启用gRPC keepalive和连接池",
                implementation=lambda: self._optimize_network_config(timeout_context)
            ))
        
        # 3. 代理负载均衡
        if timeout_context.agent_load > 0.8:
            resolution_steps.append(ResolutionStep(
                action="代理负载均衡",
                details="启动额外的代理实例分担负载",
                implementation=lambda: self._scale_agents(timeout_context)
            ))
        
        # 4. 异步处理优化
        if timeout_context.has_blocking_operations:
            resolution_steps.append(ResolutionStep(
                action="异步处理优化",
                details="将阻塞操作转换为异步操作",
                implementation=lambda: self._optimize_async_processing(timeout_context)
            ))
        
        # 执行解决方案
        results = []
        for step in resolution_steps:
            try:
                result = await step.implementation()
                results.append(ResolutionResult(step=step, success=True, result=result))
            except Exception as e:
                results.append(ResolutionResult(step=step, success=False, error=str(e)))
        
        return ResolutionSummary(steps=results)

4.3 性能问题排查

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class PerformanceTroubleshooter:
    """性能问题排查工具"""
    
    async def profile_agent_performance(
        self, 
        agent_id: AgentId, 
        duration: int = 60
    ) -> PerformanceProfile:
        """
        性能分析和profiling
        
        Args:
            agent_id: 要分析的代理ID
            duration: 分析持续时间(秒)
            
        Returns:
            PerformanceProfile: 性能分析结果
        """
        
        profiler = PerformanceProfiler()
        
        # 1. 启动性能监控
        await profiler.start_monitoring(agent_id)
        
        # 2. 收集基准数据
        baseline_metrics = await self._collect_baseline_metrics(agent_id)
        
        # 3. 运行负载测试
        load_test_results = await self._run_load_test(agent_id, duration)
        
        # 4. 分析CPU使用
        cpu_profile = await profiler.analyze_cpu_usage(agent_id)
        
        # 5. 分析内存使用
        memory_profile = await profiler.analyze_memory_usage(agent_id)
        
        # 6. 分析I/O操作
        io_profile = await profiler.analyze_io_operations(agent_id)
        
        # 7. 分析异步操作
        async_profile = await profiler.analyze_async_operations(agent_id)
        
        # 8. 停止监控
        await profiler.stop_monitoring(agent_id)
        
        # 9. 生成性能分析报告
        profile = PerformanceProfile(
            agent_id=agent_id,
            duration=duration,
            baseline_metrics=baseline_metrics,
            load_test_results=load_test_results,
            cpu_profile=cpu_profile,
            memory_profile=memory_profile,
            io_profile=io_profile,
            async_profile=async_profile,
            bottlenecks=await self._identify_bottlenecks(cpu_profile, memory_profile, io_profile),
            recommendations=await self._generate_performance_recommendations(cpu_profile, memory_profile)
        )
        
        return profile
    
    async def _identify_bottlenecks(
        self, 
        cpu_profile: CpuProfile, 
        memory_profile: MemoryProfile, 
        io_profile: IOProfile
    ) -> List[PerformanceBottleneck]:
        """识别性能瓶颈"""
        
        bottlenecks = []
        
        # CPU瓶颈检测
        if cpu_profile.peak_usage > 0.9:
            hotspots = [func for func in cpu_profile.function_stats if func.cpu_time > 0.1]
            bottlenecks.append(PerformanceBottleneck(
                type="CPU密集",
                severity="高",
                description=f"CPU使用率峰值: {cpu_profile.peak_usage:.1%}",
                hotspots=[f"{hs.function_name}: {hs.cpu_time:.2f}s" for hs in hotspots],
                recommendations=[
                    "优化计算密集型函数",
                    "考虑使用多进程处理",
                    "实现计算结果缓存"
                ]
            ))
        
        # 内存瓶颈检测
        if memory_profile.peak_usage_mb > 1024:  # 1GB
            large_objects = [obj for obj in memory_profile.object_stats if obj.size_mb > 50]
            bottlenecks.append(PerformanceBottleneck(
                type="内存密集",
                severity="中",
                description=f"内存使用峰值: {memory_profile.peak_usage_mb}MB",
                hotspots=[f"{obj.type}: {obj.size_mb}MB" for obj in large_objects],
                recommendations=[
                    "实现对象池重用",
                    "优化数据结构",
                    "增加内存清理策略"
                ]
            ))
        
        # I/O瓶颈检测
        slow_io_operations = [op for op in io_profile.operations if op.duration > 1.0]
        if slow_io_operations:
            bottlenecks.append(PerformanceBottleneck(
                type="I/O密集",
                severity="中", 
                description=f"检测到 {len(slow_io_operations)} 个慢速I/O操作",
                hotspots=[f"{op.type}({op.resource}): {op.duration:.2f}s" for op in slow_io_operations],
                recommendations=[
                    "使用异步I/O操作",
                    "实现连接池",
                    "添加超时控制"
                ]
            ))
        
        return bottlenecks

5. 生产环境维护

5.1 健康检查脚本

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/bin/bash
# autogen-health-check.sh - AutoGen系统健康检查脚本

echo "=== AutoGen 系统健康检查 ==="
echo "检查时间: $(date)"
echo

# 1. 检查核心服务状态
echo "1. 核心服务状态检查"
services=("autogen-gateway" "autogen-registry" "autogen-routing")

for service in "${services[@]}"; do
    if systemctl is-active --quiet $service; then
        echo "✅ $service: 运行中"
    else
        echo "❌ $service: 未运行"
        echo "  建议: systemctl start $service"
    fi
done

# 2. 检查端口监听
echo
echo "2. 端口监听检查"
ports=(5000 5001 5002 6379 5432)

for port in "${ports[@]}"; do
    if netstat -tuln | grep -q ":$port "; then
        echo "✅ 端口 $port: 监听中"
    else
        echo "❌ 端口 $port: 未监听"
    fi
done

# 3. 检查数据库连接
echo
echo "3. 数据库连接检查"
if pg_isready -h localhost -p 5432 -q; then
    echo "✅ PostgreSQL: 连接正常"
else
    echo "❌ PostgreSQL: 连接失败"
fi

# 4. 检查Redis缓存
echo
echo "4. Redis缓存检查"
if redis-cli ping | grep -q "PONG"; then
    echo "✅ Redis: 连接正常"
else
    echo "❌ Redis: 连接失败"
fi

# 5. 检查磁盘空间
echo
echo "5. 磁盘空间检查"
disk_usage=$(df / | awk 'NR==2 {print $5}' | sed 's/%//')
if [ "$disk_usage" -lt 80 ]; then
    echo "✅ 磁盘使用率: ${disk_usage}%"
else
    echo "⚠️ 磁盘使用率过高: ${disk_usage}%"
fi

# 6. 检查内存使用
echo
echo "6. 内存使用检查"
memory_usage=$(free | awk 'NR==2{printf "%.1f", $3*100/$2}')
if (( $(echo "$memory_usage < 80" | bc -l) )); then
    echo "✅ 内存使用率: ${memory_usage}%"
else
    echo "⚠️ 内存使用率过高: ${memory_usage}%"
fi

# 7. 检查日志错误
echo
echo "7. 最近错误日志检查"
error_count=$(journalctl -u autogen-* --since "1 hour ago" | grep -i error | wc -l)
if [ "$error_count" -eq 0 ]; then
    echo "✅ 近1小时无错误日志"
else
    echo "⚠️ 近1小时发现 $error_count 条错误日志"
    echo "  最新错误:"
    journalctl -u autogen-* --since "1 hour ago" | grep -i error | tail -3
fi

echo
echo "=== 健康检查完成 ==="

5.2 性能监控脚本

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python3
"""
AutoGen性能监控脚本
"""

import asyncio
import time
import psutil
import aiohttp
from datetime import datetime, timedelta

class AutoGenPerformanceMonitor:
    """AutoGen性能监控器"""
    
    def __init__(self):
        self.metrics_history = []
        self.alert_thresholds = {
            'cpu_usage': 80.0,
            'memory_usage': 85.0,
            'response_time': 2.0,
            'error_rate': 0.05
        }
    
    async def run_continuous_monitoring(self, interval: int = 30):
        """运行持续性能监控"""
        
        print("启动AutoGen性能监控...")
        print(f"监控间隔: {interval}秒")
        print("=" * 50)
        
        while True:
            try:
                # 收集性能指标
                metrics = await self._collect_performance_metrics()
                self.metrics_history.append(metrics)
                
                # 显示当前状态
                self._display_current_metrics(metrics)
                
                # 检查告警条件
                alerts = self._check_alert_conditions(metrics)
                if alerts:
                    self._display_alerts(alerts)
                
                # 保留最近1000条记录
                if len(self.metrics_history) > 1000:
                    self.metrics_history = self.metrics_history[-1000:]
                
                await asyncio.sleep(interval)
            
            except KeyboardInterrupt:
                print("\n监控已停止")
                break
            except Exception as e:
                print(f"监控错误: {e}")
                await asyncio.sleep(5)
    
    async def _collect_performance_metrics(self) -> Dict[str, Any]:
        """收集性能指标"""
        
        # 系统指标
        cpu_usage = psutil.cpu_percent(interval=1)
        memory = psutil.virtual_memory()
        disk = psutil.disk_usage('/')
        
        # AutoGen特定指标
        autogen_metrics = await self._collect_autogen_metrics()
        
        return {
            'timestamp': datetime.utcnow(),
            'system': {
                'cpu_usage': cpu_usage,
                'memory_usage': memory.percent,
                'memory_available_gb': memory.available / (1024**3),
                'disk_usage': disk.percent
            },
            'autogen': autogen_metrics
        }
    
    async def _collect_autogen_metrics(self) -> Dict[str, Any]:
        """收集AutoGen特定指标"""
        
        try:
            # 通过HTTP API收集指标 (假设有指标端点)
            async with aiohttp.ClientSession() as session:
                async with session.get('http://localhost:8080/metrics') as response:
                    if response.status == 200:
                        metrics_text = await response.text()
                        return self._parse_prometheus_metrics(metrics_text)
        except:
            pass
        
        # 如果无法通过API收集,返回默认值
        return {
            'active_agents': 0,
            'message_count_per_minute': 0,
            'average_response_time': 0.0,
            'error_rate': 0.0
        }
    
    def _display_current_metrics(self, metrics: Dict[str, Any]) -> None:
        """显示当前指标"""
        
        timestamp = metrics['timestamp'].strftime("%H:%M:%S")
        system = metrics['system']
        autogen = metrics['autogen']
        
        print(f"\n[{timestamp}] 系统状态:")
        print(f"  CPU使用率: {system['cpu_usage']:.1f}%")
        print(f"  内存使用率: {system['memory_usage']:.1f}% (可用: {system['memory_available_gb']:.1f}GB)")
        print(f"  磁盘使用率: {system['disk_usage']:.1f}%")
        print(f"  活跃代理数: {autogen['active_agents']}")
        print(f"  消息处理量: {autogen['message_count_per_minute']}/分钟")
        print(f"  平均响应时间: {autogen['average_response_time']:.2f}秒")
        print(f"  错误率: {autogen['error_rate']:.2%}")

# 运行监控
if __name__ == "__main__":
    monitor = AutoGenPerformanceMonitor()
    asyncio.run(monitor.run_continuous_monitoring())

6. 应急响应流程

6.1 故障应急处理

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
class EmergencyResponseHandler:
    """应急响应处理器"""
    
    async def handle_critical_failure(self, incident: CriticalIncident) -> EmergencyResponse:
        """处理关键故障"""
        
        response = EmergencyResponse(incident_id=incident.id)
        
        # 1. 立即止损措施
        immediate_actions = await self._take_immediate_actions(incident)
        response.immediate_actions = immediate_actions
        
        # 2. 系统状态保护
        protection_actions = await self._protect_system_state(incident)
        response.protection_actions = protection_actions
        
        # 3. 服务降级
        if incident.severity == 'critical':
            degradation_actions = await self._initiate_service_degradation(incident)
            response.degradation_actions = degradation_actions
        
        # 4. 通知相关人员
        notification_actions = await self._send_emergency_notifications(incident)
        response.notification_actions = notification_actions
        
        # 5. 启动恢复流程
        recovery_actions = await self._start_recovery_process(incident)
        response.recovery_actions = recovery_actions
        
        return response
    
    async def _take_immediate_actions(self, incident: CriticalIncident) -> List[Action]:
        """立即止损措施"""
        
        actions = []
        
        if incident.type == 'agent_cascade_failure':
            # 代理级联失败 - 立即隔离故障代理
            action = await self._isolate_failing_agents(incident.affected_agents)
            actions.append(action)
        
        elif incident.type == 'message_queue_overflow':
            # 消息队列溢出 - 启用背压机制
            action = await self._enable_backpressure(incident.queue_info)
            actions.append(action)
        
        elif incident.type == 'memory_exhaustion':
            # 内存耗尽 - 强制垃圾回收和代理清理
            action = await self._force_memory_cleanup(incident.memory_info)
            actions.append(action)
        
        elif incident.type == 'network_partition':
            # 网络分区 - 激活本地模式
            action = await self._activate_local_mode(incident.network_info)
            actions.append(action)
        
        return actions
    
    async def _isolate_failing_agents(self, affected_agents: List[AgentId]) -> Action:
        """隔离故障代理"""
        
        isolation_results = []
        
        for agent_id in affected_agents:
            try:
                # 1. 停止代理接收新消息
                await self._stop_agent_message_processing(agent_id)
                
                # 2. 保存代理当前状态
                await self._emergency_save_agent_state(agent_id)
                
                # 3. 从活跃代理列表中移除
                await self._remove_agent_from_active_list(agent_id)
                
                # 4. 更新路由表,避免新请求路由到故障代理
                await self._update_routing_to_exclude_agent(agent_id)
                
                isolation_results.append(f"代理 {agent_id} 已隔离")
            
            except Exception as e:
                isolation_results.append(f"隔离代理 {agent_id} 失败: {e}")
        
        return Action(
            type="代理隔离",
            description=f"隔离 {len(affected_agents)} 个故障代理",
            results=isolation_results,
            duration=time.time() - time.time()  # 记录执行时间
        )

6.2 自动恢复机制

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
class AutoRecoverySystem:
    """自动恢复系统"""
    
    def __init__(self):
        self.recovery_policies = {}
        self.recovery_history = []
        self.max_recovery_attempts = 3
    
    async def register_recovery_policy(
        self, 
        failure_pattern: str, 
        recovery_strategy: RecoveryStrategy
    ) -> None:
        """注册恢复策略"""
        
        self.recovery_policies[failure_pattern] = recovery_strategy
    
    async def attempt_auto_recovery(self, failure_event: FailureEvent) -> RecoveryResult:
        """尝试自动恢复"""
        
        recovery_id = str(uuid.uuid4())
        start_time = datetime.utcnow()
        
        try:
            # 1. 匹配恢复策略
            matching_policy = await self._find_matching_recovery_policy(failure_event)
            if not matching_policy:
                return RecoveryResult(
                    recovery_id=recovery_id,
                    success=False,
                    error="未找到匹配的恢复策略"
                )
            
            # 2. 检查恢复尝试次数
            recent_attempts = self._count_recent_recovery_attempts(failure_event.pattern)
            if recent_attempts >= self.max_recovery_attempts:
                return RecoveryResult(
                    recovery_id=recovery_id,
                    success=False,
                    error="已达到最大恢复尝试次数,需要人工介入"
                )
            
            # 3. 执行恢复策略
            recovery_steps = await matching_policy.generate_recovery_steps(failure_event)
            
            for step_index, step in enumerate(recovery_steps):
                step_result = await self._execute_recovery_step(step, failure_event)
                
                if not step_result.success:
                    return RecoveryResult(
                        recovery_id=recovery_id,
                        success=False,
                        error=f"恢复步骤 {step_index + 1} 失败: {step_result.error}",
                        completed_steps=step_index
                    )
            
            # 4. 验证恢复效果
            verification_result = await self._verify_recovery(failure_event)
            
            # 5. 记录恢复历史
            recovery_record = RecoveryRecord(
                recovery_id=recovery_id,
                failure_event=failure_event,
                recovery_policy=matching_policy.name,
                success=verification_result.success,
                duration=(datetime.utcnow() - start_time).total_seconds(),
                steps_executed=len(recovery_steps)
            )
            self.recovery_history.append(recovery_record)
            
            return RecoveryResult(
                recovery_id=recovery_id,
                success=verification_result.success,
                verification_result=verification_result,
                duration=(datetime.utcnow() - start_time).total_seconds()
            )
        
        except Exception as e:
            return RecoveryResult(
                recovery_id=recovery_id,
                success=False,
                error=f"自动恢复过程中发生异常: {e}"
            )
    
    async def _execute_recovery_step(
        self, 
        step: RecoveryStep, 
        failure_event: FailureEvent
    ) -> StepResult:
        """执行恢复步骤"""
        
        try:
            if step.type == 'restart_agent':
                result = await self._restart_agent(step.target_agent_id)
            elif step.type == 'clear_cache':
                result = await self._clear_cache(step.cache_keys)
            elif step.type == 'reset_connections':
                result = await self._reset_connections(step.connection_targets)
            elif step.type == 'scale_resources':
                result = await self._scale_resources(step.scaling_config)
            elif step.type == 'failover':
                result = await self._perform_failover(step.failover_config)
            else:
                result = StepResult(success=False, error=f"未知恢复步骤类型: {step.type}")
            
            return result
        
        except Exception as e:
            return StepResult(success=False, error=str(e))

7. 调试最佳实践

7.1 日志配置最佳实践

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# logging_config.py - 生产环境日志配置

import logging
import json
from datetime import datetime
from typing import Any, Dict

class StructuredFormatter(logging.Formatter):
    """结构化日志格式化器"""
    
    def format(self, record: logging.LogRecord) -> str:
        """格式化日志记录为JSON"""
        
        log_entry = {
            'timestamp': datetime.utcfromtimestamp(record.created).isoformat() + 'Z',
            'level': record.levelname,
            'logger': record.name,
            'message': record.getMessage(),
            'module': record.module,
            'function': record.funcName,
            'line': record.lineno
        }
        
        # 添加异常信息
        if record.exc_info:
            log_entry['exception'] = self.formatException(record.exc_info)
        
        # 添加自定义字段
        if hasattr(record, 'agent_id'):
            log_entry['agent_id'] = record.agent_id
        
        if hasattr(record, 'message_id'):
            log_entry['message_id'] = record.message_id
        
        if hasattr(record, 'trace_id'):
            log_entry['trace_id'] = record.trace_id
        
        return json.dumps(log_entry, ensure_ascii=False)

def setup_production_logging():
    """设置生产环境日志配置"""
    
    # 根日志配置
    root_logger = logging.getLogger()
    root_logger.setLevel(logging.INFO)
    
    # 控制台处理器
    console_handler = logging.StreamHandler()
    console_handler.setLevel(logging.INFO)
    console_handler.setFormatter(StructuredFormatter())
    
    # 文件处理器
    file_handler = logging.handlers.TimedRotatingFileHandler(
        filename='/var/log/autogen/autogen.log',
        when='midnight',
        interval=1,
        backupCount=30,  # 保留30天
        encoding='utf-8'
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(StructuredFormatter())
    
    # 错误文件处理器
    error_handler = logging.FileHandler(
        filename='/var/log/autogen/error.log',
        encoding='utf-8'
    )
    error_handler.setLevel(logging.ERROR)
    error_handler.setFormatter(StructuredFormatter())
    
    # 添加处理器
    root_logger.addHandler(console_handler)
    root_logger.addHandler(file_handler)
    root_logger.addHandler(error_handler)
    
    # AutoGen特定日志配置
    autogen_logger = logging.getLogger('autogen_core')
    autogen_logger.setLevel(logging.DEBUG)  # 开发环境用DEBUG,生产环境用INFO
    
    # 事件日志配置
    event_logger = logging.getLogger('autogen_core.events')
    event_logger.setLevel(logging.INFO)

7.2 调试辅助工具

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class DebugHelper:
    """调试辅助工具集"""
    
    @staticmethod
    def trace_message_flow(message_id: str) -> MessageFlowTrace:
        """追踪消息流转路径"""
        
        # 实现消息流转追踪
        trace = MessageFlowTrace(message_id=message_id)
        
        # 从日志中提取消息流转信息
        log_entries = search_logs_by_message_id(message_id)
        
        for entry in log_entries:
            trace.add_hop(MessageHop(
                timestamp=entry.timestamp,
                component=entry.component,
                action=entry.action,
                details=entry.details
            ))
        
        return trace
    
    @staticmethod
    def inspect_agent_internals(agent_id: AgentId) -> AgentInternalState:
        """检查代理内部状态"""
        
        runtime = get_current_runtime()
        if agent_id not in runtime._active_agents:
            return AgentInternalState(exists=False)
        
        agent = runtime._active_agents[agent_id]
        
        return AgentInternalState(
            exists=True,
            agent_type=type(agent).__name__,
            memory_usage=sys.getsizeof(agent),
            message_handlers=list(getattr(agent, '_message_handlers', {}).keys()),
            current_state=getattr(agent, '__dict__', {}),
            processing_queue_size=getattr(agent, '_processing_queue', Queue()).qsize()
        )
    
    @staticmethod
    async def performance_snapshot(duration: int = 10) -> PerformanceSnapshot:
        """创建性能快照"""
        
        snapshot = PerformanceSnapshot(duration=duration)
        
        # 记录开始状态
        start_metrics = await collect_system_metrics()
        
        # 等待指定时间
        await asyncio.sleep(duration)
        
        # 记录结束状态
        end_metrics = await collect_system_metrics()
        
        # 计算差值和趋势
        snapshot.metrics_delta = calculate_metrics_delta(start_metrics, end_metrics)
        snapshot.trends = analyze_performance_trends(start_metrics, end_metrics)
        
        return snapshot

8. 问题预防策略

8.1 预防性维护

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/bin/bash
# preventive-maintenance.sh - 预防性维护脚本

echo "=== AutoGen 预防性维护 ==="

# 1. 清理过期日志
echo "1. 清理过期日志文件..."
find /var/log/autogen -name "*.log.*" -mtime +30 -delete
echo "  完成"

# 2. 清理临时文件
echo "2. 清理临时文件..."
find /tmp -name "autogen_*" -mtime +1 -delete
echo "  完成"

# 3. 数据库维护
echo "3. 数据库维护..."
psql -d autogen -c "VACUUM ANALYZE;"
psql -d autogen -c "REINDEX DATABASE autogen;"
echo "  完成"

# 4. Redis缓存优化
echo "4. Redis缓存优化..."
redis-cli FLUSHEXPIRED  # 清理过期键
redis-cli MEMORY PURGE  # 内存整理
echo "  完成"

# 5. 检查磁盘空间
echo "5. 磁盘空间检查..."
df -h | grep -E "(8[0-9]|9[0-9])%" && echo "  警告: 磁盘使用率过高"
echo "  完成"

# 6. 更新监控指标
echo "6. 更新监控基线..."
python3 /opt/autogen/scripts/update_baseline_metrics.py
echo "  完成"

echo "=== 预防性维护完成 ==="

9. 总结

9.1 故障排查清单

快速诊断检查项

  • 服务状态: 检查所有AutoGen服务是否正常运行
  • 网络连接: 验证组件间网络连接正常
  • 资源使用: 检查CPU、内存、磁盘使用率
  • 日志错误: 查看最近的错误日志
  • 配置文件: 验证配置文件正确性
  • 依赖服务: 检查数据库、缓存等依赖服务状态

深度诊断检查项

  • 消息流转: 追踪消息在系统中的完整流转路径
  • 代理状态: 详细检查代理内部状态和处理能力
  • 性能分析: 进行详细的性能profiling和瓶颈分析
  • 安全审计: 检查安全日志和访问控制
  • 数据一致性: 验证分布式状态的一致性

9.2 最佳实践建议

  1. 监控先行: 建立完善的监控体系,做到问题早发现
  2. 日志规范: 使用结构化日志,便于自动化分析
  3. 自动化运维: 尽可能自动化常见的运维操作
  4. 故障演练: 定期进行故障演练,提高应急响应能力
  5. 文档更新: 及时更新故障处理文档和知识库

9.3 工具推荐

  • 监控工具: Prometheus + Grafana + AlertManager
  • 日志分析: ELK Stack (Elasticsearch + Logstash + Kibana)
  • 链路追踪: Jaeger或Zipkin
  • 性能分析: py-spy (Python) + dotMemory (.NET)
  • 压力测试: Apache JMeter + custom load test scripts

通过遵循这些故障排查和调试实践,可以显著提高AutoGen系统的稳定性和可维护性。


创建时间: 2025年09月13日

本文档基于AutoGen生产环境运维经验和最佳实践整理